// Copyright 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "cc/resources/picture_pile.h" #include #include #include #include "cc/base/region.h" #include "cc/debug/rendering_stats_instrumentation.h" #include "cc/resources/picture_pile_impl.h" #include "cc/resources/raster_worker_pool.h" #include "cc/resources/tile_priority.h" namespace { // Layout pixel buffer around the visible layer rect to record. Any base // picture that intersects the visible layer rect expanded by this distance // will be recorded. const int kPixelDistanceToRecord = 8000; // TODO(humper): The density threshold here is somewhat arbitrary; need a // way to set // this from the command line so we can write a benchmark // script and find a sweet spot. const float kDensityThreshold = 0.5f; bool rect_sort_y(const gfx::Rect &r1, const gfx::Rect &r2) { return r1.y() < r2.y() || (r1.y() == r2.y() && r1.x() < r2.x()); } bool rect_sort_x(const gfx::Rect &r1, const gfx::Rect &r2) { return r1.x() < r2.x() || (r1.x() == r2.x() && r1.y() < r2.y()); } float do_clustering(const std::vector& tiles, std::vector* clustered_rects) { // These variables track the record area and invalid area // for the entire clustering int total_record_area = 0; int total_invalid_area = 0; // These variables track the record area and invalid area // for the current cluster being constructed. gfx::Rect cur_record_rect; int cluster_record_area = 0, cluster_invalid_area = 0; for (std::vector::const_iterator it = tiles.begin(); it != tiles.end(); it++) { gfx::Rect invalid_tile = *it; // For each tile, we consider adding the invalid tile to the // current record rectangle. Only add it if the amount of empty // space created is below a density threshold. int tile_area = invalid_tile.width() * invalid_tile.height(); gfx::Rect proposed_union = cur_record_rect; proposed_union.Union(invalid_tile); int proposed_area = proposed_union.width() * proposed_union.height(); float proposed_density = static_cast(cluster_invalid_area + tile_area) / static_cast(proposed_area); if (proposed_density >= kDensityThreshold) { // It's okay to add this invalid tile to the // current recording rectangle. cur_record_rect = proposed_union; cluster_record_area = proposed_area; cluster_invalid_area += tile_area; total_invalid_area += tile_area; } else { // Adding this invalid tile to the current recording rectangle // would exceed our badness threshold, so put the current rectangle // in the list of recording rects, and start a new one. clustered_rects->push_back(cur_record_rect); total_record_area += cluster_record_area; cur_record_rect = invalid_tile; cluster_invalid_area = tile_area; cluster_record_area = tile_area; } } DCHECK(!cur_record_rect.IsEmpty()); clustered_rects->push_back(cur_record_rect); total_record_area += cluster_record_area;; DCHECK_NE(total_record_area, 0); return static_cast(total_invalid_area) / static_cast(total_record_area); } float ClusterTiles(const std::vector& invalid_tiles, std::vector* record_rects) { TRACE_EVENT1("cc", "ClusterTiles", "count", invalid_tiles.size()); if (invalid_tiles.size() <= 1) { // Quickly handle the special case for common // single-invalidation update, and also the less common // case of no tiles passed in. *record_rects = invalid_tiles; return 1; } // Sort the invalid tiles by y coordinate. std::vector invalid_tiles_vertical = invalid_tiles; std::sort(invalid_tiles_vertical.begin(), invalid_tiles_vertical.end(), rect_sort_y); float vertical_density; std::vector vertical_clustering; vertical_density = do_clustering(invalid_tiles_vertical, &vertical_clustering); // Now try again with a horizontal sort, see which one is best // TODO(humper): Heuristics for skipping this step? std::vector invalid_tiles_horizontal = invalid_tiles; std::sort(invalid_tiles_vertical.begin(), invalid_tiles_vertical.end(), rect_sort_x); float horizontal_density; std::vector horizontal_clustering; horizontal_density = do_clustering(invalid_tiles_vertical, &horizontal_clustering); if (vertical_density < horizontal_density) { *record_rects = horizontal_clustering; return horizontal_density; } *record_rects = vertical_clustering; return vertical_density; } } // namespace namespace cc { PicturePile::PicturePile() : is_suitable_for_gpu_rasterization_(true) {} PicturePile::~PicturePile() { } bool PicturePile::Update(ContentLayerClient* painter, SkColor background_color, bool contents_opaque, bool contents_fill_bounds_completely, const Region& invalidation, const gfx::Rect& visible_layer_rect, int frame_number, Picture::RecordingMode recording_mode, RenderingStatsInstrumentation* stats_instrumentation) { background_color_ = background_color; contents_opaque_ = contents_opaque; contents_fill_bounds_completely_ = contents_fill_bounds_completely; gfx::Rect interest_rect = visible_layer_rect; interest_rect.Inset( -kPixelDistanceToRecord, -kPixelDistanceToRecord, -kPixelDistanceToRecord, -kPixelDistanceToRecord); recorded_viewport_ = interest_rect; recorded_viewport_.Intersect(tiling_rect()); bool invalidated = false; for (Region::Iterator i(invalidation); i.has_rect(); i.next()) { gfx::Rect invalidation = i.rect(); // Split this inflated invalidation across tile boundaries and apply it // to all tiles that it touches. bool include_borders = true; for (TilingData::Iterator iter(&tiling_, invalidation, include_borders); iter; ++iter) { const PictureMapKey& key = iter.index(); PictureMap::iterator picture_it = picture_map_.find(key); if (picture_it == picture_map_.end()) continue; // Inform the grid cell that it has been invalidated in this frame. invalidated = picture_it->second.Invalidate(frame_number) || invalidated; } } // Make a list of all invalid tiles; we will attempt to // cluster these into multiple invalidation regions. std::vector invalid_tiles; bool include_borders = true; for (TilingData::Iterator it(&tiling_, interest_rect, include_borders); it; ++it) { const PictureMapKey& key = it.index(); PictureInfo& info = picture_map_[key]; gfx::Rect rect = PaddedRect(key); int distance_to_visible = rect.ManhattanInternalDistance(visible_layer_rect); if (info.NeedsRecording(frame_number, distance_to_visible)) { gfx::Rect tile = tiling_.TileBounds(key.first, key.second); invalid_tiles.push_back(tile); } else if (!info.GetPicture() && recorded_viewport_.Intersects(rect)) { // Recorded viewport is just an optimization for a fully recorded // interest rect. In this case, a tile in that rect has declined // to be recorded (probably due to frequent invalidations). // TODO(enne): Shrink the recorded_viewport_ rather than clearing. recorded_viewport_ = gfx::Rect(); } } std::vector record_rects; ClusterTiles(invalid_tiles, &record_rects); if (record_rects.empty()) return invalidated; for (std::vector::iterator it = record_rects.begin(); it != record_rects.end(); it++) { gfx::Rect record_rect = *it; record_rect = PadRect(record_rect); int repeat_count = std::max(1, slow_down_raster_scale_factor_for_debug_); scoped_refptr picture; int num_raster_threads = RasterWorkerPool::GetNumRasterThreads(); // Note: Currently, gathering of pixel refs when using a single // raster thread doesn't provide any benefit. This might change // in the future but we avoid it for now to reduce the cost of // Picture::Create. bool gather_pixel_refs = num_raster_threads > 1; { base::TimeDelta best_duration = base::TimeDelta::Max(); for (int i = 0; i < repeat_count; i++) { base::TimeTicks start_time = stats_instrumentation->StartRecording(); picture = Picture::Create(record_rect, painter, tile_grid_info_, gather_pixel_refs, num_raster_threads, recording_mode); // Note the '&&' with previous is-suitable state. // This means that once a picture-pile becomes unsuitable for gpu // rasterization due to some content, it will continue to be unsuitable // even if that content is replaced by gpu-friendly content. // This is an optimization to avoid iterating though all pictures in // the pile after each invalidation. is_suitable_for_gpu_rasterization_ &= picture->IsSuitableForGpuRasterization(); base::TimeDelta duration = stats_instrumentation->EndRecording(start_time); best_duration = std::min(duration, best_duration); } int recorded_pixel_count = picture->LayerRect().width() * picture->LayerRect().height(); stats_instrumentation->AddRecord(best_duration, recorded_pixel_count); } bool found_tile_for_recorded_picture = false; bool include_borders = true; for (TilingData::Iterator it(&tiling_, record_rect, include_borders); it; ++it) { const PictureMapKey& key = it.index(); gfx::Rect tile = PaddedRect(key); if (record_rect.Contains(tile)) { PictureInfo& info = picture_map_[key]; info.SetPicture(picture); found_tile_for_recorded_picture = true; } } DCHECK(found_tile_for_recorded_picture); } has_any_recordings_ = true; DCHECK(CanRasterSlowTileCheck(recorded_viewport_)); return true; } } // namespace cc