// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "cc/resources/picture_pile_base.h" #include #include #include #include "base/logging.h" #include "base/values.h" #include "cc/base/math_util.h" #include "cc/debug/traced_value.h" #include "third_party/skia/include/core/SkColor.h" #include "ui/gfx/rect_conversions.h" namespace { // Dimensions of the tiles in this picture pile as well as the dimensions of // the base picture in each tile. const int kBasePictureSize = 512; const int kTileGridBorderPixels = 1; #ifdef NDEBUG const bool kDefaultClearCanvasSetting = false; #else const bool kDefaultClearCanvasSetting = true; #endif // Invalidation frequency settings. kInvalidationFrequencyThreshold is a value // between 0 and 1 meaning invalidation frequency between 0% and 100% that // indicates when to stop invalidating offscreen regions. // kFrequentInvalidationDistanceThreshold defines what it means to be // "offscreen" in terms of distance to visible in css pixels. const float kInvalidationFrequencyThreshold = 0.75f; const int kFrequentInvalidationDistanceThreshold = 512; } // namespace namespace cc { PicturePileBase::PicturePileBase() : min_contents_scale_(0), background_color_(SkColorSetARGBInline(0, 0, 0, 0)), slow_down_raster_scale_factor_for_debug_(0), contents_opaque_(false), show_debug_picture_borders_(false), clear_canvas_with_debug_color_(kDefaultClearCanvasSetting) { tiling_.SetMaxTextureSize(gfx::Size(kBasePictureSize, kBasePictureSize)); tile_grid_info_.fTileInterval.setEmpty(); tile_grid_info_.fMargin.setEmpty(); tile_grid_info_.fOffset.setZero(); } PicturePileBase::PicturePileBase(const PicturePileBase* other) : picture_map_(other->picture_map_), tiling_(other->tiling_), recorded_region_(other->recorded_region_), min_contents_scale_(other->min_contents_scale_), tile_grid_info_(other->tile_grid_info_), background_color_(other->background_color_), slow_down_raster_scale_factor_for_debug_( other->slow_down_raster_scale_factor_for_debug_), contents_opaque_(other->contents_opaque_), show_debug_picture_borders_(other->show_debug_picture_borders_), clear_canvas_with_debug_color_(other->clear_canvas_with_debug_color_) { } PicturePileBase::PicturePileBase( const PicturePileBase* other, unsigned thread_index) : tiling_(other->tiling_), recorded_region_(other->recorded_region_), min_contents_scale_(other->min_contents_scale_), tile_grid_info_(other->tile_grid_info_), background_color_(other->background_color_), slow_down_raster_scale_factor_for_debug_( other->slow_down_raster_scale_factor_for_debug_), contents_opaque_(other->contents_opaque_), show_debug_picture_borders_(other->show_debug_picture_borders_), clear_canvas_with_debug_color_(other->clear_canvas_with_debug_color_) { for (PictureMap::const_iterator it = other->picture_map_.begin(); it != other->picture_map_.end(); ++it) { picture_map_[it->first] = it->second.CloneForThread(thread_index); } } PicturePileBase::~PicturePileBase() { } void PicturePileBase::Resize(const gfx::Size& new_size) { if (size() == new_size) return; gfx::Size old_size = size(); tiling_.SetTotalSize(new_size); // Find all tiles that contain any pixels outside the new size. std::vector to_erase; int min_toss_x = tiling_.FirstBorderTileXIndexFromSrcCoord( std::min(old_size.width(), new_size.width())); int min_toss_y = tiling_.FirstBorderTileYIndexFromSrcCoord( std::min(old_size.height(), new_size.height())); for (PictureMap::const_iterator it = picture_map_.begin(); it != picture_map_.end(); ++it) { const PictureMapKey& key = it->first; if (key.first < min_toss_x && key.second < min_toss_y) continue; to_erase.push_back(key); } for (size_t i = 0; i < to_erase.size(); ++i) picture_map_.erase(to_erase[i]); } void PicturePileBase::SetMinContentsScale(float min_contents_scale) { DCHECK(min_contents_scale); if (min_contents_scale_ == min_contents_scale) return; // Picture contents are played back scaled. When the final contents scale is // less than 1 (i.e. low res), then multiple recorded pixels will be used // to raster one final pixel. To avoid splitting a final pixel across // pictures (which would result in incorrect rasterization due to blending), a // buffer margin is added so that any picture can be snapped to integral // final pixels. // // For example, if a 1/4 contents scale is used, then that would be 3 buffer // pixels, since that's the minimum number of pixels to add so that resulting // content can be snapped to a four pixel aligned grid. int buffer_pixels = static_cast(ceil(1 / min_contents_scale) - 1); buffer_pixels = std::max(0, buffer_pixels); SetBufferPixels(buffer_pixels); min_contents_scale_ = min_contents_scale; } // static void PicturePileBase::ComputeTileGridInfo( const gfx::Size& tile_grid_size, SkTileGridPicture::TileGridInfo* info) { DCHECK(info); info->fTileInterval.set(tile_grid_size.width() - 2 * kTileGridBorderPixels, tile_grid_size.height() - 2 * kTileGridBorderPixels); DCHECK_GT(info->fTileInterval.width(), 0); DCHECK_GT(info->fTileInterval.height(), 0); info->fMargin.set(kTileGridBorderPixels, kTileGridBorderPixels); // Offset the tile grid coordinate space to take into account the fact // that the top-most and left-most tiles do not have top and left borders // respectively. info->fOffset.set(-kTileGridBorderPixels, -kTileGridBorderPixels); } void PicturePileBase::SetTileGridSize(const gfx::Size& tile_grid_size) { ComputeTileGridInfo(tile_grid_size, &tile_grid_info_); } void PicturePileBase::SetBufferPixels(int new_buffer_pixels) { if (new_buffer_pixels == buffer_pixels()) return; Clear(); tiling_.SetBorderTexels(new_buffer_pixels); } void PicturePileBase::Clear() { picture_map_.clear(); } void PicturePileBase::UpdateRecordedRegion() { recorded_region_.Clear(); for (PictureMap::const_iterator it = picture_map_.begin(); it != picture_map_.end(); ++it) { if (it->second.GetPicture()) { const PictureMapKey& key = it->first; recorded_region_.Union(tile_bounds(key.first, key.second)); } } } bool PicturePileBase::HasRecordingAt(int x, int y) { PictureMap::const_iterator found = picture_map_.find(PictureMapKey(x, y)); if (found == picture_map_.end()) return false; return !!found->second.GetPicture(); } bool PicturePileBase::CanRaster(float contents_scale, const gfx::Rect& content_rect) { if (tiling_.total_size().IsEmpty()) return false; gfx::Rect layer_rect = gfx::ScaleToEnclosingRect( content_rect, 1.f / contents_scale); layer_rect.Intersect(gfx::Rect(tiling_.total_size())); return recorded_region_.Contains(layer_rect); } gfx::Rect PicturePileBase::PaddedRect(const PictureMapKey& key) { gfx::Rect tile = tiling_.TileBounds(key.first, key.second); return PadRect(tile); } gfx::Rect PicturePileBase::PadRect(const gfx::Rect& rect) { gfx::Rect padded_rect = rect; padded_rect.Inset( -buffer_pixels(), -buffer_pixels(), -buffer_pixels(), -buffer_pixels()); return padded_rect; } scoped_ptr PicturePileBase::AsValue() const { scoped_ptr pictures(new base::ListValue()); gfx::Rect layer_rect(tiling_.total_size()); std::set appended_pictures; for (TilingData::Iterator tile_iter(&tiling_, layer_rect); tile_iter; ++tile_iter) { PictureMap::const_iterator map_iter = picture_map_.find(tile_iter.index()); if (map_iter == picture_map_.end()) continue; Picture* picture = map_iter->second.GetPicture(); if (picture && (appended_pictures.count(picture) == 0)) { appended_pictures.insert(picture); pictures->Append(TracedValue::CreateIDRef(picture).release()); } } return pictures.PassAs(); } PicturePileBase::PictureInfo::PictureInfo() : last_frame_number_(0) {} PicturePileBase::PictureInfo::~PictureInfo() {} void PicturePileBase::PictureInfo::AdvanceInvalidationHistory( int frame_number) { DCHECK_GE(frame_number, last_frame_number_); if (frame_number == last_frame_number_) return; invalidation_history_ <<= (frame_number - last_frame_number_); last_frame_number_ = frame_number; } bool PicturePileBase::PictureInfo::Invalidate(int frame_number) { AdvanceInvalidationHistory(frame_number); invalidation_history_.set(0); bool did_invalidate = !!picture_; picture_ = NULL; return did_invalidate; } bool PicturePileBase::PictureInfo::NeedsRecording(int frame_number, int distance_to_visible) { AdvanceInvalidationHistory(frame_number); // We only need recording if we don't have a picture. Furthermore, we only // need a recording if we're within frequent invalidation distance threshold // or the invalidation is not frequent enough (below invalidation frequency // threshold). return !picture_ && ((distance_to_visible <= kFrequentInvalidationDistanceThreshold) || (GetInvalidationFrequency() < kInvalidationFrequencyThreshold)); } void PicturePileBase::PictureInfo::SetPicture(scoped_refptr picture) { picture_ = picture; } Picture* PicturePileBase::PictureInfo::GetPicture() const { return picture_.get(); } PicturePileBase::PictureInfo PicturePileBase::PictureInfo::CloneForThread( int thread_index) const { PictureInfo info = *this; if (picture_.get()) info.picture_ = picture_->GetCloneForDrawingOnThread(thread_index); return info; } float PicturePileBase::PictureInfo::GetInvalidationFrequency() const { return invalidation_history_.count() / static_cast(INVALIDATION_FRAMES_TRACKED); } } // namespace cc