// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/memory/scoped_ptr.h" #include "cc/test/fake_picture_pile_impl.h" #include "cc/test/skia_common.h" #include "skia/ext/refptr.h" #include "testing/gtest/include/gtest/gtest.h" #include "third_party/skia/include/core/SkPixelRef.h" #include "third_party/skia/include/core/SkShader.h" #include "ui/gfx/geometry/rect.h" #include "ui/gfx/geometry/size_conversions.h" namespace cc { namespace { TEST(PicturePileImplTest, AnalyzeIsSolidUnscaled) { gfx::Size tile_size(100, 100); gfx::Size layer_bounds(400, 400); scoped_ptr recording_source = FakePicturePile::CreateFilledPile(tile_size, layer_bounds); SkPaint solid_paint; SkColor solid_color = SkColorSetARGB(255, 12, 23, 34); solid_paint.setColor(solid_color); SkColor non_solid_color = SkColorSetARGB(128, 45, 56, 67); SkPaint non_solid_paint; non_solid_paint.setColor(non_solid_color); recording_source->add_draw_rect_with_paint(gfx::Rect(0, 0, 400, 400), solid_paint); recording_source->RerecordPile(); scoped_refptr pile = FakePicturePileImpl::CreateFromPile(recording_source.get(), nullptr); // Ensure everything is solid. for (int y = 0; y <= 300; y += 100) { for (int x = 0; x <= 300; x += 100) { RasterSource::SolidColorAnalysis analysis; gfx::Rect rect(x, y, 100, 100); pile->PerformSolidColorAnalysis(rect, 1.0, &analysis); EXPECT_TRUE(analysis.is_solid_color) << rect.ToString(); EXPECT_EQ(analysis.solid_color, solid_color) << rect.ToString(); } } // Add one non-solid pixel and recreate the raster source. recording_source->add_draw_rect_with_paint(gfx::Rect(50, 50, 1, 1), non_solid_paint); recording_source->RerecordPile(); pile = FakePicturePileImpl::CreateFromPile(recording_source.get(), nullptr); RasterSource::SolidColorAnalysis analysis; pile->PerformSolidColorAnalysis(gfx::Rect(0, 0, 100, 100), 1.0, &analysis); EXPECT_FALSE(analysis.is_solid_color); pile->PerformSolidColorAnalysis(gfx::Rect(100, 0, 100, 100), 1.0, &analysis); EXPECT_TRUE(analysis.is_solid_color); EXPECT_EQ(analysis.solid_color, solid_color); // Boundaries should be clipped. analysis.is_solid_color = false; pile->PerformSolidColorAnalysis(gfx::Rect(350, 0, 100, 100), 1.0, &analysis); EXPECT_TRUE(analysis.is_solid_color); EXPECT_EQ(analysis.solid_color, solid_color); analysis.is_solid_color = false; pile->PerformSolidColorAnalysis(gfx::Rect(0, 350, 100, 100), 1.0, &analysis); EXPECT_TRUE(analysis.is_solid_color); EXPECT_EQ(analysis.solid_color, solid_color); analysis.is_solid_color = false; pile->PerformSolidColorAnalysis(gfx::Rect(350, 350, 100, 100), 1.0, &analysis); EXPECT_TRUE(analysis.is_solid_color); EXPECT_EQ(analysis.solid_color, solid_color); } TEST(PicturePileImplTest, AnalyzeIsSolidScaled) { gfx::Size tile_size(100, 100); gfx::Size layer_bounds(400, 400); scoped_ptr recording_source = FakePicturePile::CreateFilledPile(tile_size, layer_bounds); SkColor solid_color = SkColorSetARGB(255, 12, 23, 34); SkPaint solid_paint; solid_paint.setColor(solid_color); SkColor non_solid_color = SkColorSetARGB(128, 45, 56, 67); SkPaint non_solid_paint; non_solid_paint.setColor(non_solid_color); recording_source->add_draw_rect_with_paint(gfx::Rect(0, 0, 400, 400), solid_paint); recording_source->RerecordPile(); scoped_refptr pile = FakePicturePileImpl::CreateFromPile(recording_source.get(), nullptr); // Ensure everything is solid. for (int y = 0; y <= 30; y += 10) { for (int x = 0; x <= 30; x += 10) { RasterSource::SolidColorAnalysis analysis; gfx::Rect rect(x, y, 10, 10); pile->PerformSolidColorAnalysis(rect, 0.1f, &analysis); EXPECT_TRUE(analysis.is_solid_color) << rect.ToString(); EXPECT_EQ(analysis.solid_color, solid_color) << rect.ToString(); } } // Add one non-solid pixel and recreate the raster source. recording_source->add_draw_rect_with_paint(gfx::Rect(50, 50, 1, 1), non_solid_paint); recording_source->RerecordPile(); pile = FakePicturePileImpl::CreateFromPile(recording_source.get(), nullptr); RasterSource::SolidColorAnalysis analysis; pile->PerformSolidColorAnalysis(gfx::Rect(0, 0, 10, 10), 0.1f, &analysis); EXPECT_FALSE(analysis.is_solid_color); pile->PerformSolidColorAnalysis(gfx::Rect(10, 0, 10, 10), 0.1f, &analysis); EXPECT_TRUE(analysis.is_solid_color); EXPECT_EQ(analysis.solid_color, solid_color); // Boundaries should be clipped. analysis.is_solid_color = false; pile->PerformSolidColorAnalysis(gfx::Rect(35, 0, 10, 10), 0.1f, &analysis); EXPECT_TRUE(analysis.is_solid_color); EXPECT_EQ(analysis.solid_color, solid_color); analysis.is_solid_color = false; pile->PerformSolidColorAnalysis(gfx::Rect(0, 35, 10, 10), 0.1f, &analysis); EXPECT_TRUE(analysis.is_solid_color); EXPECT_EQ(analysis.solid_color, solid_color); analysis.is_solid_color = false; pile->PerformSolidColorAnalysis(gfx::Rect(35, 35, 10, 10), 0.1f, &analysis); EXPECT_TRUE(analysis.is_solid_color); EXPECT_EQ(analysis.solid_color, solid_color); } TEST(PicturePileImplTest, AnalyzeIsSolidEmpty) { gfx::Size tile_size(100, 100); gfx::Size layer_bounds(400, 400); scoped_refptr pile = FakePicturePileImpl::CreateFilledPile(tile_size, layer_bounds); RasterSource::SolidColorAnalysis analysis; EXPECT_FALSE(analysis.is_solid_color); pile->PerformSolidColorAnalysis(gfx::Rect(0, 0, 400, 400), 1.f, &analysis); EXPECT_TRUE(analysis.is_solid_color); EXPECT_EQ(analysis.solid_color, SkColorSetARGB(0, 0, 0, 0)); } TEST(PicturePileImplTest, PixelRefIteratorEmpty) { gfx::Size tile_size(128, 128); gfx::Size layer_bounds(256, 256); // Create a filled pile with no recording. scoped_refptr pile = FakePicturePileImpl::CreateFilledPile(tile_size, layer_bounds); // Tile sized iterators. { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(0, 0, 128, 128), 1.0, pile.get()); EXPECT_FALSE(iterator); } { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(0, 0, 256, 256), 2.0, pile.get()); EXPECT_FALSE(iterator); } { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(0, 0, 64, 64), 0.5, pile.get()); EXPECT_FALSE(iterator); } // Shifted tile sized iterators. { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(140, 140, 128, 128), 1.0, pile.get()); EXPECT_FALSE(iterator); } { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(280, 280, 256, 256), 2.0, pile.get()); EXPECT_FALSE(iterator); } { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(70, 70, 64, 64), 0.5, pile.get()); EXPECT_FALSE(iterator); } // Layer sized iterators. { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(0, 0, 256, 256), 1.0, pile.get()); EXPECT_FALSE(iterator); } { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(0, 0, 512, 512), 2.0, pile.get()); EXPECT_FALSE(iterator); } { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(0, 0, 128, 128), 0.5, pile.get()); EXPECT_FALSE(iterator); } } TEST(PicturePileImplTest, PixelRefIteratorNoDiscardableRefs) { gfx::Size tile_size(128, 128); gfx::Size layer_bounds(256, 256); scoped_ptr recording_source = FakePicturePile::CreateFilledPile(tile_size, layer_bounds); SkPaint simple_paint; simple_paint.setColor(SkColorSetARGB(255, 12, 23, 34)); SkBitmap non_discardable_bitmap; CreateBitmap(gfx::Size(128, 128), "notdiscardable", &non_discardable_bitmap); recording_source->add_draw_rect_with_paint(gfx::Rect(0, 0, 256, 256), simple_paint); recording_source->add_draw_rect_with_paint(gfx::Rect(128, 128, 512, 512), simple_paint); recording_source->add_draw_rect_with_paint(gfx::Rect(512, 0, 256, 256), simple_paint); recording_source->add_draw_rect_with_paint(gfx::Rect(0, 512, 256, 256), simple_paint); recording_source->add_draw_bitmap(non_discardable_bitmap, gfx::Point(128, 0)); recording_source->add_draw_bitmap(non_discardable_bitmap, gfx::Point(0, 128)); recording_source->add_draw_bitmap(non_discardable_bitmap, gfx::Point(150, 150)); recording_source->RerecordPile(); scoped_refptr pile = FakePicturePileImpl::CreateFromPile(recording_source.get(), nullptr); // Tile sized iterators. { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(0, 0, 128, 128), 1.0, pile.get()); EXPECT_FALSE(iterator); } { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(0, 0, 256, 256), 2.0, pile.get()); EXPECT_FALSE(iterator); } { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(0, 0, 64, 64), 0.5, pile.get()); EXPECT_FALSE(iterator); } // Shifted tile sized iterators. { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(140, 140, 128, 128), 1.0, pile.get()); EXPECT_FALSE(iterator); } { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(280, 280, 256, 256), 2.0, pile.get()); EXPECT_FALSE(iterator); } { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(70, 70, 64, 64), 0.5, pile.get()); EXPECT_FALSE(iterator); } // Layer sized iterators. { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(0, 0, 256, 256), 1.0, pile.get()); EXPECT_FALSE(iterator); } { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(0, 0, 512, 512), 2.0, pile.get()); EXPECT_FALSE(iterator); } { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(0, 0, 128, 128), 0.5, pile.get()); EXPECT_FALSE(iterator); } } TEST(PicturePileImplTest, PixelRefIteratorDiscardableRefs) { gfx::Size tile_size(128, 128); gfx::Size layer_bounds(256, 256); scoped_ptr recording_source = FakePicturePile::CreateFilledPile(tile_size, layer_bounds); SkBitmap discardable_bitmap[2][2]; CreateBitmap(gfx::Size(32, 32), "discardable", &discardable_bitmap[0][0]); CreateBitmap(gfx::Size(32, 32), "discardable", &discardable_bitmap[1][0]); CreateBitmap(gfx::Size(32, 32), "discardable", &discardable_bitmap[1][1]); // Discardable pixel refs are found in the following cells: // |---|---| // | x | | // |---|---| // | x | x | // |---|---| recording_source->add_draw_bitmap(discardable_bitmap[0][0], gfx::Point(0, 0)); recording_source->add_draw_bitmap(discardable_bitmap[1][0], gfx::Point(0, 130)); recording_source->add_draw_bitmap(discardable_bitmap[1][1], gfx::Point(140, 140)); recording_source->RerecordPile(); scoped_refptr pile = FakePicturePileImpl::CreateFromPile(recording_source.get(), nullptr); // Tile sized iterators. These should find only one pixel ref. { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(0, 0, 128, 128), 1.0, pile.get()); EXPECT_TRUE(iterator); EXPECT_TRUE(*iterator == discardable_bitmap[0][0].pixelRef()); EXPECT_FALSE(++iterator); } { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(0, 0, 256, 256), 2.0, pile.get()); EXPECT_TRUE(iterator); EXPECT_TRUE(*iterator == discardable_bitmap[0][0].pixelRef()); EXPECT_FALSE(++iterator); } { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(0, 0, 64, 64), 0.5, pile.get()); EXPECT_TRUE(iterator); EXPECT_TRUE(*iterator == discardable_bitmap[0][0].pixelRef()); EXPECT_FALSE(++iterator); } // Shifted tile sized iterators. These should find only one pixel ref. { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(140, 140, 128, 128), 1.0, pile.get()); EXPECT_TRUE(iterator); EXPECT_TRUE(*iterator == discardable_bitmap[1][1].pixelRef()); EXPECT_FALSE(++iterator); } { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(280, 280, 256, 256), 2.0, pile.get()); EXPECT_TRUE(iterator); EXPECT_TRUE(*iterator == discardable_bitmap[1][1].pixelRef()); EXPECT_FALSE(++iterator); } { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(70, 70, 64, 64), 0.5, pile.get()); EXPECT_TRUE(iterator); EXPECT_TRUE(*iterator == discardable_bitmap[1][1].pixelRef()); EXPECT_FALSE(++iterator); } // Ensure there's no discardable pixel refs in the empty cell { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(140, 0, 128, 128), 1.0, pile.get()); EXPECT_FALSE(iterator); } // Layer sized iterators. These should find all 3 pixel refs. { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(0, 0, 256, 256), 1.0, pile.get()); EXPECT_TRUE(iterator); EXPECT_TRUE(*iterator == discardable_bitmap[0][0].pixelRef()); EXPECT_TRUE(++iterator); EXPECT_TRUE(*iterator == discardable_bitmap[1][0].pixelRef()); EXPECT_TRUE(++iterator); EXPECT_TRUE(*iterator == discardable_bitmap[1][1].pixelRef()); EXPECT_FALSE(++iterator); } { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(0, 0, 512, 512), 2.0, pile.get()); EXPECT_TRUE(iterator); EXPECT_TRUE(*iterator == discardable_bitmap[0][0].pixelRef()); EXPECT_TRUE(++iterator); EXPECT_TRUE(*iterator == discardable_bitmap[1][0].pixelRef()); EXPECT_TRUE(++iterator); EXPECT_TRUE(*iterator == discardable_bitmap[1][1].pixelRef()); EXPECT_FALSE(++iterator); } { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(0, 0, 128, 128), 0.5, pile.get()); EXPECT_TRUE(iterator); EXPECT_TRUE(*iterator == discardable_bitmap[0][0].pixelRef()); EXPECT_TRUE(++iterator); EXPECT_TRUE(*iterator == discardable_bitmap[1][0].pixelRef()); EXPECT_TRUE(++iterator); EXPECT_TRUE(*iterator == discardable_bitmap[1][1].pixelRef()); EXPECT_FALSE(++iterator); } } TEST(PicturePileImplTest, PixelRefIteratorDiscardableRefsOneTile) { gfx::Size tile_size(256, 256); gfx::Size layer_bounds(512, 512); scoped_ptr recording_source = FakePicturePile::CreateFilledPile(tile_size, layer_bounds); SkBitmap discardable_bitmap[2][2]; CreateBitmap(gfx::Size(32, 32), "discardable", &discardable_bitmap[0][0]); CreateBitmap(gfx::Size(32, 32), "discardable", &discardable_bitmap[0][1]); CreateBitmap(gfx::Size(32, 32), "discardable", &discardable_bitmap[1][1]); // Discardable pixel refs are found in the following cells: // |---|---| // | x | x | // |---|---| // | | x | // |---|---| recording_source->add_draw_bitmap(discardable_bitmap[0][0], gfx::Point(0, 0)); recording_source->add_draw_bitmap(discardable_bitmap[0][1], gfx::Point(260, 0)); recording_source->add_draw_bitmap(discardable_bitmap[1][1], gfx::Point(260, 260)); recording_source->RerecordPile(); scoped_refptr pile = FakePicturePileImpl::CreateFromPile(recording_source.get(), nullptr); // Tile sized iterators. These should find only one pixel ref. { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(0, 0, 256, 256), 1.0, pile.get()); EXPECT_TRUE(iterator); EXPECT_TRUE(*iterator == discardable_bitmap[0][0].pixelRef()); EXPECT_FALSE(++iterator); } { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(0, 0, 512, 512), 2.0, pile.get()); EXPECT_TRUE(iterator); EXPECT_TRUE(*iterator == discardable_bitmap[0][0].pixelRef()); EXPECT_FALSE(++iterator); } { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(0, 0, 128, 128), 0.5, pile.get()); EXPECT_TRUE(iterator); EXPECT_TRUE(*iterator == discardable_bitmap[0][0].pixelRef()); EXPECT_FALSE(++iterator); } // Shifted tile sized iterators. These should find only one pixel ref. { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(260, 260, 256, 256), 1.0, pile.get()); EXPECT_TRUE(iterator); EXPECT_TRUE(*iterator == discardable_bitmap[1][1].pixelRef()); EXPECT_FALSE(++iterator); } { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(520, 520, 512, 512), 2.0, pile.get()); EXPECT_TRUE(iterator); EXPECT_TRUE(*iterator == discardable_bitmap[1][1].pixelRef()); EXPECT_FALSE(++iterator); } { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(130, 130, 128, 128), 0.5, pile.get()); EXPECT_TRUE(iterator); EXPECT_TRUE(*iterator == discardable_bitmap[1][1].pixelRef()); EXPECT_FALSE(++iterator); } // Ensure there's no discardable pixel refs in the empty cell { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(0, 256, 256, 256), 1.0, pile.get()); EXPECT_FALSE(iterator); } // Layer sized iterators. These should find three pixel ref. { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(0, 0, 512, 512), 1.0, pile.get()); EXPECT_TRUE(iterator); EXPECT_TRUE(*iterator == discardable_bitmap[0][0].pixelRef()); EXPECT_TRUE(++iterator); EXPECT_TRUE(*iterator == discardable_bitmap[0][1].pixelRef()); EXPECT_TRUE(++iterator); EXPECT_TRUE(*iterator == discardable_bitmap[1][1].pixelRef()); EXPECT_FALSE(++iterator); } { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(0, 0, 1024, 1024), 2.0, pile.get()); EXPECT_TRUE(iterator); EXPECT_TRUE(*iterator == discardable_bitmap[0][0].pixelRef()); EXPECT_TRUE(++iterator); EXPECT_TRUE(*iterator == discardable_bitmap[0][1].pixelRef()); EXPECT_TRUE(++iterator); EXPECT_TRUE(*iterator == discardable_bitmap[1][1].pixelRef()); EXPECT_FALSE(++iterator); } { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(0, 0, 256, 256), 0.5, pile.get()); EXPECT_TRUE(iterator); EXPECT_TRUE(*iterator == discardable_bitmap[0][0].pixelRef()); EXPECT_TRUE(++iterator); EXPECT_TRUE(*iterator == discardable_bitmap[0][1].pixelRef()); EXPECT_TRUE(++iterator); EXPECT_TRUE(*iterator == discardable_bitmap[1][1].pixelRef()); EXPECT_FALSE(++iterator); } // Copy test. PicturePileImpl::PixelRefIterator iterator( gfx::Rect(0, 0, 512, 512), 1.0, pile.get()); EXPECT_TRUE(iterator); EXPECT_TRUE(*iterator == discardable_bitmap[0][0].pixelRef()); EXPECT_TRUE(++iterator); EXPECT_TRUE(*iterator == discardable_bitmap[0][1].pixelRef()); // copy now points to the same spot as iterator, // but both can be incremented independently. PicturePileImpl::PixelRefIterator copy = iterator; EXPECT_TRUE(++iterator); EXPECT_TRUE(*iterator == discardable_bitmap[1][1].pixelRef()); EXPECT_FALSE(++iterator); EXPECT_TRUE(copy); EXPECT_TRUE(*copy == discardable_bitmap[0][1].pixelRef()); EXPECT_TRUE(++copy); EXPECT_TRUE(*copy == discardable_bitmap[1][1].pixelRef()); EXPECT_FALSE(++copy); } TEST(PicturePileImplTest, PixelRefIteratorDiscardableRefsBaseNonDiscardable) { gfx::Size tile_size(256, 256); gfx::Size layer_bounds(512, 512); scoped_ptr recording_source = FakePicturePile::CreateFilledPile(tile_size, layer_bounds); SkBitmap non_discardable_bitmap; CreateBitmap(gfx::Size(512, 512), "notdiscardable", &non_discardable_bitmap); SkBitmap discardable_bitmap[2][2]; CreateBitmap(gfx::Size(128, 128), "discardable", &discardable_bitmap[0][0]); CreateBitmap(gfx::Size(128, 128), "discardable", &discardable_bitmap[0][1]); CreateBitmap(gfx::Size(128, 128), "discardable", &discardable_bitmap[1][1]); // One large non-discardable bitmap covers the whole grid. // Discardable pixel refs are found in the following cells: // |---|---| // | x | x | // |---|---| // | | x | // |---|---| recording_source->add_draw_bitmap(non_discardable_bitmap, gfx::Point(0, 0)); recording_source->add_draw_bitmap(discardable_bitmap[0][0], gfx::Point(0, 0)); recording_source->add_draw_bitmap(discardable_bitmap[0][1], gfx::Point(260, 0)); recording_source->add_draw_bitmap(discardable_bitmap[1][1], gfx::Point(260, 260)); recording_source->RerecordPile(); scoped_refptr pile = FakePicturePileImpl::CreateFromPile(recording_source.get(), nullptr); // Tile sized iterators. These should find only one pixel ref. { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(0, 0, 256, 256), 1.0, pile.get()); EXPECT_TRUE(iterator); EXPECT_TRUE(*iterator == discardable_bitmap[0][0].pixelRef()); EXPECT_FALSE(++iterator); } { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(0, 0, 512, 512), 2.0, pile.get()); EXPECT_TRUE(iterator); EXPECT_TRUE(*iterator == discardable_bitmap[0][0].pixelRef()); EXPECT_FALSE(++iterator); } { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(0, 0, 128, 128), 0.5, pile.get()); EXPECT_TRUE(iterator); EXPECT_TRUE(*iterator == discardable_bitmap[0][0].pixelRef()); EXPECT_FALSE(++iterator); } // Shifted tile sized iterators. These should find only one pixel ref. { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(260, 260, 256, 256), 1.0, pile.get()); EXPECT_TRUE(iterator); EXPECT_TRUE(*iterator == discardable_bitmap[1][1].pixelRef()); EXPECT_FALSE(++iterator); } { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(520, 520, 512, 512), 2.0, pile.get()); EXPECT_TRUE(iterator); EXPECT_TRUE(*iterator == discardable_bitmap[1][1].pixelRef()); EXPECT_FALSE(++iterator); } { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(130, 130, 128, 128), 0.5, pile.get()); EXPECT_TRUE(iterator); EXPECT_TRUE(*iterator == discardable_bitmap[1][1].pixelRef()); EXPECT_FALSE(++iterator); } // Ensure there's no discardable pixel refs in the empty cell { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(0, 256, 256, 256), 1.0, pile.get()); EXPECT_FALSE(iterator); } // Layer sized iterators. These should find three pixel ref. { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(0, 0, 512, 512), 1.0, pile.get()); EXPECT_TRUE(iterator); EXPECT_TRUE(*iterator == discardable_bitmap[0][0].pixelRef()); EXPECT_TRUE(++iterator); EXPECT_TRUE(*iterator == discardable_bitmap[0][1].pixelRef()); EXPECT_TRUE(++iterator); EXPECT_TRUE(*iterator == discardable_bitmap[1][1].pixelRef()); EXPECT_FALSE(++iterator); } { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(0, 0, 1024, 1024), 2.0, pile.get()); EXPECT_TRUE(iterator); EXPECT_TRUE(*iterator == discardable_bitmap[0][0].pixelRef()); EXPECT_TRUE(++iterator); EXPECT_TRUE(*iterator == discardable_bitmap[0][1].pixelRef()); EXPECT_TRUE(++iterator); EXPECT_TRUE(*iterator == discardable_bitmap[1][1].pixelRef()); EXPECT_FALSE(++iterator); } { PicturePileImpl::PixelRefIterator iterator( gfx::Rect(0, 0, 256, 256), 0.5, pile.get()); EXPECT_TRUE(iterator); EXPECT_TRUE(*iterator == discardable_bitmap[0][0].pixelRef()); EXPECT_TRUE(++iterator); EXPECT_TRUE(*iterator == discardable_bitmap[0][1].pixelRef()); EXPECT_TRUE(++iterator); EXPECT_TRUE(*iterator == discardable_bitmap[1][1].pixelRef()); EXPECT_FALSE(++iterator); } } TEST(PicturePileImplTest, RasterFullContents) { gfx::Size tile_size(1000, 1000); gfx::Size layer_bounds(3, 5); float contents_scale = 1.5f; float raster_divisions = 2.f; scoped_ptr recording_source = FakePicturePile::CreateFilledPile(tile_size, layer_bounds); recording_source->SetBackgroundColor(SK_ColorBLACK); recording_source->SetIsSolidColor(false); recording_source->SetRequiresClear(false); recording_source->SetClearCanvasWithDebugColor(false); // Because the caller sets content opaque, it also promises that it // has at least filled in layer_bounds opaquely. SkPaint white_paint; white_paint.setColor(SK_ColorWHITE); recording_source->add_draw_rect_with_paint(gfx::Rect(layer_bounds), white_paint); recording_source->SetMinContentsScale(contents_scale); recording_source->RerecordPile(); scoped_refptr pile = FakePicturePileImpl::CreateFromPile(recording_source.get(), nullptr); gfx::Size content_bounds( gfx::ToCeiledSize(gfx::ScaleSize(layer_bounds, contents_scale))); // Simulate drawing into different tiles at different offsets. int step_x = std::ceil(content_bounds.width() / raster_divisions); int step_y = std::ceil(content_bounds.height() / raster_divisions); for (int offset_x = 0; offset_x < content_bounds.width(); offset_x += step_x) { for (int offset_y = 0; offset_y < content_bounds.height(); offset_y += step_y) { gfx::Rect content_rect(offset_x, offset_y, step_x, step_y); content_rect.Intersect(gfx::Rect(content_bounds)); // Simulate a canvas rect larger than the content rect. Every pixel // up to one pixel outside the content rect is guaranteed to be opaque. // Outside of that is undefined. gfx::Rect canvas_rect(content_rect); canvas_rect.Inset(0, 0, -1, -1); SkBitmap bitmap; bitmap.allocN32Pixels(canvas_rect.width(), canvas_rect.height()); SkCanvas canvas(bitmap); canvas.clear(SK_ColorTRANSPARENT); pile->PlaybackToCanvas(&canvas, canvas_rect, contents_scale); SkColor* pixels = reinterpret_cast(bitmap.getPixels()); int num_pixels = bitmap.width() * bitmap.height(); bool all_white = true; for (int i = 0; i < num_pixels; ++i) { EXPECT_EQ(SkColorGetA(pixels[i]), 255u); all_white &= (SkColorGetR(pixels[i]) == 255); all_white &= (SkColorGetG(pixels[i]) == 255); all_white &= (SkColorGetB(pixels[i]) == 255); } // If the canvas doesn't extend past the edge of the content, // it should be entirely white. Otherwise, the edge of the content // will be non-white. EXPECT_EQ(all_white, gfx::Rect(content_bounds).Contains(canvas_rect)); } } } TEST(PicturePileImpl, RasterContentsTransparent) { gfx::Size tile_size(1000, 1000); gfx::Size layer_bounds(5, 3); float contents_scale = 0.5f; scoped_ptr recording_source = FakePicturePile::CreateFilledPile(tile_size, layer_bounds); recording_source->SetBackgroundColor(SK_ColorTRANSPARENT); recording_source->SetRequiresClear(true); recording_source->SetMinContentsScale(contents_scale); recording_source->SetClearCanvasWithDebugColor(false); recording_source->RerecordPile(); scoped_refptr pile = FakePicturePileImpl::CreateFromPile(recording_source.get(), nullptr); gfx::Size content_bounds( gfx::ToCeiledSize(gfx::ScaleSize(layer_bounds, contents_scale))); gfx::Rect canvas_rect(content_bounds); canvas_rect.Inset(0, 0, -1, -1); SkBitmap bitmap; bitmap.allocN32Pixels(canvas_rect.width(), canvas_rect.height()); SkCanvas canvas(bitmap); pile->PlaybackToCanvas(&canvas, canvas_rect, contents_scale); SkColor* pixels = reinterpret_cast(bitmap.getPixels()); int num_pixels = bitmap.width() * bitmap.height(); for (int i = 0; i < num_pixels; ++i) { EXPECT_EQ(SkColorGetA(pixels[i]), 0u); } } class OverlapTest : public ::testing::TestWithParam { public: static float MinContentsScale() { return 1.f / 4.f; } }; TEST_P(OverlapTest, NoOverlap) { gfx::Size tile_size(10, 10); gfx::Size layer_bounds(30, 30); gfx::Size bigger_than_layer_bounds(300, 300); float contents_scale = GetParam(); // Pick an opaque color to not have to deal with premultiplication off-by-one. SkColor test_color = SkColorSetARGB(255, 45, 56, 67); scoped_ptr recording_source = FakePicturePile::CreateFilledPile(tile_size, layer_bounds); recording_source->SetBackgroundColor(SK_ColorTRANSPARENT); recording_source->SetRequiresClear(true); recording_source->SetMinContentsScale(MinContentsScale()); recording_source->SetClearCanvasWithDebugColor(true); SkPaint color_paint; color_paint.setColor(test_color); // Additive paint, so that if two paints overlap, the color will change. color_paint.setXfermodeMode(SkXfermode::kPlus_Mode); // Paint outside the layer to make sure that blending works. recording_source->add_draw_rect_with_paint( gfx::RectF(bigger_than_layer_bounds), color_paint); recording_source->RerecordPile(); scoped_refptr pile = FakePicturePileImpl::CreateFromPile(recording_source.get(), nullptr); gfx::Size content_bounds( gfx::ToCeiledSize(gfx::ScaleSize(layer_bounds, contents_scale))); SkBitmap bitmap; bitmap.allocN32Pixels(content_bounds.width(), content_bounds.height()); SkCanvas canvas(bitmap); pile->PlaybackToCanvas(&canvas, gfx::Rect(content_bounds), contents_scale); for (int y = 0; y < bitmap.height(); y++) { for (int x = 0; x < bitmap.width(); x++) { SkColor color = bitmap.getColor(x, y); EXPECT_EQ(SkColorGetR(test_color), SkColorGetR(color)) << "x: " << x << ", y: " << y; EXPECT_EQ(SkColorGetG(test_color), SkColorGetG(color)) << "x: " << x << ", y: " << y; EXPECT_EQ(SkColorGetB(test_color), SkColorGetB(color)) << "x: " << x << ", y: " << y; EXPECT_EQ(SkColorGetA(test_color), SkColorGetA(color)) << "x: " << x << ", y: " << y; if (test_color != color) break; } } } INSTANTIATE_TEST_CASE_P(PicturePileImpl, OverlapTest, ::testing::Values(1.f, 0.873f, 1.f / 4.f, 4.f)); TEST(PicturePileImplTest, PixelRefIteratorBorders) { // 3 tile width / 1 tile height pile gfx::Size tile_size(128, 128); gfx::Size layer_bounds(320, 128); // Fake picture pile uses a tile grid the size of the tile. So, // any iteration that intersects with a tile will return all pixel refs // inside of it. scoped_ptr recording_source = FakePicturePile::CreateFilledPile(tile_size, layer_bounds); recording_source->SetMinContentsScale(0.5f); // Bitmaps 0-2 are exactly on tiles 0-2, so that they overlap the borders // of adjacent tiles. gfx::Rect bitmap_rects[] = { recording_source->tiling().TileBounds(0, 0), recording_source->tiling().TileBounds(1, 0), recording_source->tiling().TileBounds(2, 0), }; SkBitmap discardable_bitmap[arraysize(bitmap_rects)]; for (size_t i = 0; i < arraysize(bitmap_rects); ++i) { CreateBitmap(bitmap_rects[i].size(), "discardable", &discardable_bitmap[i]); recording_source->add_draw_bitmap(discardable_bitmap[i], bitmap_rects[i].origin()); } recording_source->RerecordPile(); scoped_refptr pile = FakePicturePileImpl::CreateFromPile(recording_source.get(), nullptr); // Sanity check that bitmaps 0-2 intersect the borders of their adjacent // tiles, but not the actual tiles. EXPECT_TRUE( bitmap_rects[0].Intersects(pile->tiling().TileBoundsWithBorder(1, 0))); EXPECT_FALSE(bitmap_rects[0].Intersects(pile->tiling().TileBounds(1, 0))); EXPECT_TRUE( bitmap_rects[1].Intersects(pile->tiling().TileBoundsWithBorder(0, 0))); EXPECT_FALSE(bitmap_rects[1].Intersects(pile->tiling().TileBounds(0, 0))); EXPECT_TRUE( bitmap_rects[1].Intersects(pile->tiling().TileBoundsWithBorder(2, 0))); EXPECT_FALSE(bitmap_rects[1].Intersects(pile->tiling().TileBounds(2, 0))); EXPECT_TRUE( bitmap_rects[2].Intersects(pile->tiling().TileBoundsWithBorder(1, 0))); EXPECT_FALSE(bitmap_rects[2].Intersects(pile->tiling().TileBounds(1, 0))); // Tile-sized iterators. { // Because tile 0's borders extend onto tile 1, it will include both // bitmap 0 and 1. However, it should *not* include bitmap 2. PicturePileImpl::PixelRefIterator iterator( pile->tiling().TileBounds(0, 0), 1.f, pile.get()); EXPECT_TRUE(iterator); EXPECT_TRUE(*iterator == discardable_bitmap[0].pixelRef()); EXPECT_TRUE(++iterator); EXPECT_TRUE(*iterator == discardable_bitmap[1].pixelRef()); EXPECT_FALSE(++iterator); } { // Tile 1 + borders hits all bitmaps. PicturePileImpl::PixelRefIterator iterator( pile->tiling().TileBounds(1, 0), 1.f, pile.get()); EXPECT_TRUE(iterator); EXPECT_TRUE(*iterator == discardable_bitmap[0].pixelRef()); EXPECT_TRUE(++iterator); EXPECT_TRUE(*iterator == discardable_bitmap[1].pixelRef()); EXPECT_TRUE(++iterator); EXPECT_TRUE(*iterator == discardable_bitmap[2].pixelRef()); EXPECT_FALSE(++iterator); } { // Tile 2 should not include bitmap 0, which is only on tile 0 and the // borders of tile 1. PicturePileImpl::PixelRefIterator iterator( pile->tiling().TileBounds(2, 0), 1.f, pile.get()); EXPECT_TRUE(iterator); EXPECT_TRUE(*iterator == discardable_bitmap[1].pixelRef()); EXPECT_TRUE(++iterator); EXPECT_TRUE(*iterator == discardable_bitmap[2].pixelRef()); EXPECT_FALSE(++iterator); } } } // namespace } // namespace cc