// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "cc/resources/raster_tile_priority_queue.h" namespace cc { namespace { class RasterOrderComparator { public: explicit RasterOrderComparator(TreePriority tree_priority) : tree_priority_(tree_priority) {} bool operator()( const RasterTilePriorityQueue::PairedPictureLayerQueue* a, const RasterTilePriorityQueue::PairedPictureLayerQueue* b) const { // Note that in this function, we have to return true if and only if // a is strictly lower priority than b. Note that for the sake of // completeness, empty queue is considered to have lowest priority. if (a->IsEmpty() || b->IsEmpty()) return b->IsEmpty() < a->IsEmpty(); WhichTree a_tree = a->NextTileIteratorTree(tree_priority_); const PictureLayerImpl::LayerRasterTileIterator* a_iterator = a_tree == ACTIVE_TREE ? &a->active_iterator : &a->pending_iterator; WhichTree b_tree = b->NextTileIteratorTree(tree_priority_); const PictureLayerImpl::LayerRasterTileIterator* b_iterator = b_tree == ACTIVE_TREE ? &b->active_iterator : &b->pending_iterator; const Tile* a_tile = **a_iterator; const Tile* b_tile = **b_iterator; const TilePriority& a_priority = a_tile->priority_for_tree_priority(tree_priority_); const TilePriority& b_priority = b_tile->priority_for_tree_priority(tree_priority_); bool prioritize_low_res = tree_priority_ == SMOOTHNESS_TAKES_PRIORITY; // In smoothness mode, we should return pending NOW tiles before active // EVENTUALLY tiles. So if both priorities here are eventually, we need to // check the pending priority. if (prioritize_low_res && a_priority.priority_bin == TilePriority::EVENTUALLY && b_priority.priority_bin == TilePriority::EVENTUALLY) { bool a_is_pending_now = a_tile->priority(PENDING_TREE).priority_bin == TilePriority::NOW; bool b_is_pending_now = b_tile->priority(PENDING_TREE).priority_bin == TilePriority::NOW; if (a_is_pending_now || b_is_pending_now) return a_is_pending_now < b_is_pending_now; // In case neither one is pending now, fall through. } // If the bin is the same but the resolution is not, then the order will be // determined by whether we prioritize low res or not. // TODO(vmpstr): Remove this when TilePriority is no longer a member of Tile // class but instead produced by the iterators. if (b_priority.priority_bin == a_priority.priority_bin && b_priority.resolution != a_priority.resolution) { // Non ideal resolution should be sorted lower than other resolutions. if (a_priority.resolution == NON_IDEAL_RESOLUTION) return true; if (b_priority.resolution == NON_IDEAL_RESOLUTION) return false; if (prioritize_low_res) return b_priority.resolution == LOW_RESOLUTION; return b_priority.resolution == HIGH_RESOLUTION; } return b_priority.IsHigherPriorityThan(a_priority); } private: TreePriority tree_priority_; }; WhichTree HigherPriorityTree( TreePriority tree_priority, const PictureLayerImpl::LayerRasterTileIterator* active_iterator, const PictureLayerImpl::LayerRasterTileIterator* pending_iterator, const Tile* shared_tile) { switch (tree_priority) { case SMOOTHNESS_TAKES_PRIORITY: { const Tile* active_tile = shared_tile ? shared_tile : **active_iterator; const Tile* pending_tile = shared_tile ? shared_tile : **pending_iterator; const TilePriority& active_priority = active_tile->priority(ACTIVE_TREE); const TilePriority& pending_priority = pending_tile->priority(PENDING_TREE); // If we're down to eventually bin tiles on the active tree, process the // pending tree to allow tiles required for activation to be initialized // when memory policy only allows prepaint. if (active_priority.priority_bin == TilePriority::EVENTUALLY && pending_priority.priority_bin == TilePriority::NOW) { return PENDING_TREE; } return ACTIVE_TREE; } case NEW_CONTENT_TAKES_PRIORITY: return PENDING_TREE; case SAME_PRIORITY_FOR_BOTH_TREES: { const Tile* active_tile = shared_tile ? shared_tile : **active_iterator; const Tile* pending_tile = shared_tile ? shared_tile : **pending_iterator; const TilePriority& active_priority = active_tile->priority(ACTIVE_TREE); const TilePriority& pending_priority = pending_tile->priority(PENDING_TREE); if (active_priority.IsHigherPriorityThan(pending_priority)) return ACTIVE_TREE; return PENDING_TREE; } default: NOTREACHED(); return ACTIVE_TREE; } } } // namespace RasterTilePriorityQueue::RasterTilePriorityQueue() { } RasterTilePriorityQueue::~RasterTilePriorityQueue() { } void RasterTilePriorityQueue::Build( const std::vector& paired_layers, TreePriority tree_priority) { tree_priority_ = tree_priority; for (std::vector::const_iterator it = paired_layers.begin(); it != paired_layers.end(); ++it) { paired_queues_.push_back( make_scoped_ptr(new PairedPictureLayerQueue(*it, tree_priority_))); } paired_queues_.make_heap(RasterOrderComparator(tree_priority_)); } void RasterTilePriorityQueue::Reset() { paired_queues_.clear(); } bool RasterTilePriorityQueue::IsEmpty() const { return paired_queues_.empty() || paired_queues_.front()->IsEmpty(); } Tile* RasterTilePriorityQueue::Top() { DCHECK(!IsEmpty()); return paired_queues_.front()->Top(tree_priority_); } void RasterTilePriorityQueue::Pop() { DCHECK(!IsEmpty()); paired_queues_.pop_heap(RasterOrderComparator(tree_priority_)); PairedPictureLayerQueue* paired_queue = paired_queues_.back(); paired_queue->Pop(tree_priority_); paired_queues_.push_heap(RasterOrderComparator(tree_priority_)); } RasterTilePriorityQueue::PairedPictureLayerQueue::PairedPictureLayerQueue() { } RasterTilePriorityQueue::PairedPictureLayerQueue::PairedPictureLayerQueue( const PictureLayerImpl::Pair& layer_pair, TreePriority tree_priority) : active_iterator(layer_pair.active ? PictureLayerImpl::LayerRasterTileIterator( layer_pair.active, tree_priority == SMOOTHNESS_TAKES_PRIORITY) : PictureLayerImpl::LayerRasterTileIterator()), pending_iterator(layer_pair.pending ? PictureLayerImpl::LayerRasterTileIterator( layer_pair.pending, tree_priority == SMOOTHNESS_TAKES_PRIORITY) : PictureLayerImpl::LayerRasterTileIterator()), has_both_layers(layer_pair.active && layer_pair.pending) { if (has_both_layers) SkipTilesReturnedByTwin(tree_priority); TRACE_EVENT_INSTANT1(TRACE_DISABLED_BY_DEFAULT("cc.debug"), "PairedPictureLayerQueue::PairedPictureLayerQueue", TRACE_EVENT_SCOPE_THREAD, "state", StateAsValue()); } RasterTilePriorityQueue::PairedPictureLayerQueue::~PairedPictureLayerQueue() { TRACE_EVENT_INSTANT1(TRACE_DISABLED_BY_DEFAULT("cc.debug"), "PairedPictureLayerQueue::~PairedPictureLayerQueue", TRACE_EVENT_SCOPE_THREAD, "state", StateAsValue()); } bool RasterTilePriorityQueue::PairedPictureLayerQueue::IsEmpty() const { return !active_iterator && !pending_iterator; } Tile* RasterTilePriorityQueue::PairedPictureLayerQueue::Top( TreePriority tree_priority) { DCHECK(!IsEmpty()); WhichTree next_tree = NextTileIteratorTree(tree_priority); PictureLayerImpl::LayerRasterTileIterator* next_iterator = next_tree == ACTIVE_TREE ? &active_iterator : &pending_iterator; DCHECK(*next_iterator); Tile* tile = **next_iterator; DCHECK(returned_tiles_for_debug.find(tile) == returned_tiles_for_debug.end()); return tile; } void RasterTilePriorityQueue::PairedPictureLayerQueue::Pop( TreePriority tree_priority) { DCHECK(!IsEmpty()); WhichTree next_tree = NextTileIteratorTree(tree_priority); PictureLayerImpl::LayerRasterTileIterator* next_iterator = next_tree == ACTIVE_TREE ? &active_iterator : &pending_iterator; DCHECK(*next_iterator); DCHECK(returned_tiles_for_debug.insert(**next_iterator).second); ++(*next_iterator); if (has_both_layers) SkipTilesReturnedByTwin(tree_priority); // If no empty, use Top to do DCHECK the next iterator. DCHECK(IsEmpty() || Top(tree_priority)); } void RasterTilePriorityQueue::PairedPictureLayerQueue::SkipTilesReturnedByTwin( TreePriority tree_priority) { // We have both layers (active and pending) thus we can encounter shared // tiles twice (from the active iterator and from the pending iterator). while (!IsEmpty()) { WhichTree next_tree = NextTileIteratorTree(tree_priority); PictureLayerImpl::LayerRasterTileIterator* next_iterator = next_tree == ACTIVE_TREE ? &active_iterator : &pending_iterator; // Accept all non-shared tiles. const Tile* tile = **next_iterator; if (!tile->is_shared()) break; // Accept a shared tile if the next tree is the higher priority one // corresponding the iterator (active or pending) which usually (but due // to spiral iterators not always) returns the shared tile first. if (next_tree == HigherPriorityTree(tree_priority, nullptr, nullptr, tile)) break; ++(*next_iterator); } } WhichTree RasterTilePriorityQueue::PairedPictureLayerQueue::NextTileIteratorTree( TreePriority tree_priority) const { DCHECK(!IsEmpty()); // If we only have one iterator with tiles, return it. if (!active_iterator) return PENDING_TREE; if (!pending_iterator) return ACTIVE_TREE; // Now both iterators have tiles, so we have to decide based on tree priority. return HigherPriorityTree( tree_priority, &active_iterator, &pending_iterator, nullptr); } scoped_refptr RasterTilePriorityQueue::PairedPictureLayerQueue::StateAsValue() const { scoped_refptr state = new base::debug::TracedValue(); state->BeginDictionary("active_iterator"); TilePriority::PriorityBin active_priority_bin = active_iterator ? (*active_iterator)->priority(ACTIVE_TREE).priority_bin : TilePriority::EVENTUALLY; TilePriority::PriorityBin pending_priority_bin = active_iterator ? (*active_iterator)->priority(PENDING_TREE).priority_bin : TilePriority::EVENTUALLY; state->SetBoolean("has_tile", !!active_iterator); state->SetInteger("active_priority_bin", active_priority_bin); state->SetInteger("pending_priority_bin", pending_priority_bin); state->EndDictionary(); state->BeginDictionary("pending_iterator"); active_priority_bin = pending_iterator ? (*pending_iterator)->priority(ACTIVE_TREE).priority_bin : TilePriority::EVENTUALLY; pending_priority_bin = pending_iterator ? (*pending_iterator)->priority(PENDING_TREE).priority_bin : TilePriority::EVENTUALLY; state->SetBoolean("has_tile", !!pending_iterator); state->SetInteger("active_priority_bin", active_priority_bin); state->SetInteger("pending_priority_bin", pending_priority_bin); state->EndDictionary(); return state; } } // namespace cc