// Copyright 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "cc/resources/tile_priority.h" #include "base/values.h" #include "cc/base/math_util.h" namespace { // TODO(qinmin): modify ui/gfx/range/range.h to support template so that we // don't need to define this. struct Range { Range(float start, float end) : start_(start), end_(end) {} bool IsEmpty(); float start_; float end_; }; bool Range::IsEmpty() { return start_ >= end_; } inline void IntersectNegativeHalfplane(Range* out, float previous, float current, float target, float time_delta) { float time_per_dist = time_delta / (current - previous); float t = (target - current) * time_per_dist; if (time_per_dist > 0.0f) out->start_ = std::max(out->start_, t); else out->end_ = std::min(out->end_, t); } inline void IntersectPositiveHalfplane(Range* out, float previous, float current, float target, float time_delta) { float time_per_dist = time_delta / (current - previous); float t = (target - current) * time_per_dist; if (time_per_dist < 0.0f) out->start_ = std::max(out->start_, t); else out->end_ = std::min(out->end_, t); } } // namespace namespace cc { scoped_ptr WhichTreeAsValue(WhichTree tree) { switch (tree) { case ACTIVE_TREE: return scoped_ptr(base::Value::CreateStringValue( "ACTIVE_TREE")); case PENDING_TREE: return scoped_ptr(base::Value::CreateStringValue( "PENDING_TREE")); default: DCHECK(false) << "Unrecognized WhichTree value " << tree; return scoped_ptr(base::Value::CreateStringValue( "")); } } scoped_ptr TileResolutionAsValue( TileResolution resolution) { switch (resolution) { case LOW_RESOLUTION: return scoped_ptr(base::Value::CreateStringValue( "LOW_RESOLUTION")); case HIGH_RESOLUTION: return scoped_ptr(base::Value::CreateStringValue( "HIGH_RESOLUTION")); case NON_IDEAL_RESOLUTION: return scoped_ptr(base::Value::CreateStringValue( "NON_IDEAL_RESOLUTION")); } DCHECK(false) << "Unrecognized TileResolution value " << resolution; return scoped_ptr(base::Value::CreateStringValue( "")); } scoped_ptr TilePriority::AsValue() const { scoped_ptr state(new base::DictionaryValue()); state->Set("resolution", TileResolutionAsValue(resolution).release()); state->Set("time_to_visible_in_seconds", MathUtil::AsValueSafely(time_to_visible_in_seconds).release()); state->Set("distance_to_visible_in_pixels", MathUtil::AsValueSafely(distance_to_visible_in_pixels).release()); return state.PassAs(); } float TilePriority::TimeForBoundsToIntersect(const gfx::RectF& previous_bounds, const gfx::RectF& current_bounds, float time_delta, const gfx::RectF& target_bounds) { // Perform an intersection test explicitly between current and target. if (current_bounds.x() < target_bounds.right() && current_bounds.y() < target_bounds.bottom() && target_bounds.x() < current_bounds.right() && target_bounds.y() < current_bounds.bottom()) return 0.0f; const float kMaxTimeToVisibleInSeconds = std::numeric_limits::infinity(); if (time_delta == 0.0f) return kMaxTimeToVisibleInSeconds; // As we are trying to solve the case of both scaling and scrolling, using // a single coordinate with velocity is not enough. The logic here is to // calculate the velocity for each edge. Then we calculate the time range that // each edge will stay on the same side of the target bounds. If there is an // overlap between these time ranges, the bounds must have intersect with // each other during that period of time. Range range(0.0f, kMaxTimeToVisibleInSeconds); IntersectPositiveHalfplane( &range, previous_bounds.x(), current_bounds.x(), target_bounds.right(), time_delta); IntersectNegativeHalfplane( &range, previous_bounds.right(), current_bounds.right(), target_bounds.x(), time_delta); IntersectPositiveHalfplane( &range, previous_bounds.y(), current_bounds.y(), target_bounds.bottom(), time_delta); IntersectNegativeHalfplane( &range, previous_bounds.bottom(), current_bounds.bottom(), target_bounds.y(), time_delta); return range.IsEmpty() ? kMaxTimeToVisibleInSeconds : range.start_; } scoped_ptr TileMemoryLimitPolicyAsValue( TileMemoryLimitPolicy policy) { switch (policy) { case ALLOW_NOTHING: return scoped_ptr(base::Value::CreateStringValue( "ALLOW_NOTHING")); case ALLOW_ABSOLUTE_MINIMUM: return scoped_ptr(base::Value::CreateStringValue( "ALLOW_ABSOLUTE_MINIMUM")); case ALLOW_PREPAINT_ONLY: return scoped_ptr(base::Value::CreateStringValue( "ALLOW_PREPAINT_ONLY")); case ALLOW_ANYTHING: return scoped_ptr(base::Value::CreateStringValue( "ALLOW_ANYTHING")); default: DCHECK(false) << "Unrecognized policy value"; return scoped_ptr(base::Value::CreateStringValue( "")); } } scoped_ptr TreePriorityAsValue(TreePriority prio) { switch (prio) { case SAME_PRIORITY_FOR_BOTH_TREES: return scoped_ptr(base::Value::CreateStringValue( "SAME_PRIORITY_FOR_BOTH_TREES")); case SMOOTHNESS_TAKES_PRIORITY: return scoped_ptr(base::Value::CreateStringValue( "SMOOTHNESS_TAKES_PRIORITY")); case NEW_CONTENT_TAKES_PRIORITY: return scoped_ptr(base::Value::CreateStringValue( "NEW_CONTENT_TAKES_PRIORITY")); } DCHECK(false) << "Unrecognized priority value " << prio; return scoped_ptr(base::Value::CreateStringValue( "")); } scoped_ptr GlobalStateThatImpactsTilePriority::AsValue() const { scoped_ptr state(new base::DictionaryValue()); state->Set("memory_limit_policy", TileMemoryLimitPolicyAsValue(memory_limit_policy).release()); state->SetInteger("memory_limit_in_bytes", memory_limit_in_bytes); state->SetInteger("unused_memory_limit_in_bytes", unused_memory_limit_in_bytes); state->SetInteger("num_resources_limit", num_resources_limit); state->Set("tree_priority", TreePriorityAsValue(tree_priority).release()); return state.PassAs(); } } // namespace cc