// Copyright 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "cc/scheduler/delay_based_time_source.h" #include #include #include "base/bind.h" #include "base/debug/trace_event.h" #include "base/location.h" #include "base/logging.h" #include "base/single_thread_task_runner.h" namespace cc { namespace { // kDoubleTickDivisor prevents ticks from running within the specified // fraction of an interval. This helps account for jitter in the timebase as // well as quick timer reactivation. static const int kDoubleTickDivisor = 4; // kIntervalChangeThreshold is the fraction of the interval that will trigger an // immediate interval change. kPhaseChangeThreshold is the fraction of the // interval that will trigger an immediate phase change. If the changes are // within the thresholds, the change will take place on the next tick. If // either change is outside the thresholds, the next tick will be canceled and // reissued immediately. static const double kIntervalChangeThreshold = 0.25; static const double kPhaseChangeThreshold = 0.25; } // namespace scoped_refptr DelayBasedTimeSource::Create( base::TimeDelta interval, base::SingleThreadTaskRunner* task_runner) { return make_scoped_refptr(new DelayBasedTimeSource(interval, task_runner)); } DelayBasedTimeSource::DelayBasedTimeSource( base::TimeDelta interval, base::SingleThreadTaskRunner* task_runner) : client_(NULL), last_tick_time_(base::TimeTicks() - interval), current_parameters_(interval, base::TimeTicks()), next_parameters_(interval, base::TimeTicks()), active_(false), task_runner_(task_runner), weak_factory_(this) {} DelayBasedTimeSource::~DelayBasedTimeSource() {} void DelayBasedTimeSource::SetActive(bool active) { TRACE_EVENT1("cc", "DelayBasedTimeSource::SetActive", "active", active); if (active == active_) return; active_ = active; if (!active_) { weak_factory_.InvalidateWeakPtrs(); return; } PostNextTickTask(Now()); } bool DelayBasedTimeSource::Active() const { return active_; } base::TimeTicks DelayBasedTimeSource::LastTickTime() { return last_tick_time_; } base::TimeTicks DelayBasedTimeSource::NextTickTime() { return Active() ? current_parameters_.tick_target : base::TimeTicks(); } void DelayBasedTimeSource::OnTimerFired() { DCHECK(active_); last_tick_time_ = current_parameters_.tick_target; PostNextTickTask(Now()); // Fire the tick. if (client_) client_->OnTimerTick(); } void DelayBasedTimeSource::SetClient(TimeSourceClient* client) { client_ = client; } void DelayBasedTimeSource::SetTimebaseAndInterval(base::TimeTicks timebase, base::TimeDelta interval) { next_parameters_.interval = interval; next_parameters_.tick_target = timebase; if (!active_) { // If we aren't active, there's no need to reset the timer. return; } // If the change in interval is larger than the change threshold, // request an immediate reset. double interval_delta = std::abs((interval - current_parameters_.interval).InSecondsF()); double interval_change = interval_delta / interval.InSecondsF(); if (interval_change > kIntervalChangeThreshold) { TRACE_EVENT_INSTANT0("cc", "DelayBasedTimeSource::IntervalChanged", TRACE_EVENT_SCOPE_THREAD); SetActive(false); SetActive(true); return; } // If the change in phase is greater than the change threshold in either // direction, request an immediate reset. This logic might result in a false // negative if there is a simultaneous small change in the interval and the // fmod just happens to return something near zero. Assuming the timebase // is very recent though, which it should be, we'll still be ok because the // old clock and new clock just happen to line up. double target_delta = std::abs((timebase - current_parameters_.tick_target).InSecondsF()); double phase_change = fmod(target_delta, interval.InSecondsF()) / interval.InSecondsF(); if (phase_change > kPhaseChangeThreshold && phase_change < (1.0 - kPhaseChangeThreshold)) { TRACE_EVENT_INSTANT0("cc", "DelayBasedTimeSource::PhaseChanged", TRACE_EVENT_SCOPE_THREAD); SetActive(false); SetActive(true); return; } } base::TimeTicks DelayBasedTimeSource::Now() const { return base::TimeTicks::Now(); } // This code tries to achieve an average tick rate as close to interval_ as // possible. To do this, it has to deal with a few basic issues: // 1. PostDelayedTask can delay only at a millisecond granularity. So, 16.666 // has to posted as 16 or 17. // 2. A delayed task may come back a bit late (a few ms), or really late // (frames later) // // The basic idea with this scheduler here is to keep track of where we *want* // to run in tick_target_. We update this with the exact interval. // // Then, when we post our task, we take the floor of (tick_target_ and Now()). // If we started at now=0, and 60FPs (all times in milliseconds): // now=0 target=16.667 PostDelayedTask(16) // // When our callback runs, we figure out how far off we were from that goal. // Because of the flooring operation, and assuming our timer runs exactly when // it should, this yields: // now=16 target=16.667 // // Since we can't post a 0.667 ms task to get to now=16, we just treat this as a // tick. Then, we update target to be 33.333. We now post another task based on // the difference between our target and now: // now=16 tick_target=16.667 new_target=33.333 --> // PostDelayedTask(floor(33.333 - 16)) --> PostDelayedTask(17) // // Over time, with no late tasks, this leads to us posting tasks like this: // now=0 tick_target=0 new_target=16.667 --> // tick(), PostDelayedTask(16) // now=16 tick_target=16.667 new_target=33.333 --> // tick(), PostDelayedTask(17) // now=33 tick_target=33.333 new_target=50.000 --> // tick(), PostDelayedTask(17) // now=50 tick_target=50.000 new_target=66.667 --> // tick(), PostDelayedTask(16) // // We treat delays in tasks differently depending on the amount of delay we // encounter. Suppose we posted a task with a target=16.667: // Case 1: late but not unrecoverably-so // now=18 tick_target=16.667 // // Case 2: so late we obviously missed the tick // now=25.0 tick_target=16.667 // // We treat the first case as a tick anyway, and assume the delay was unusual. // Thus, we compute the new_target based on the old timebase: // now=18 tick_target=16.667 new_target=33.333 --> // tick(), PostDelayedTask(floor(33.333-18)) --> PostDelayedTask(15) // This brings us back to 18+15 = 33, which was where we would have been if the // task hadn't been late. // // For the really late delay, we we move to the next logical tick. The timebase // is not reset. // now=37 tick_target=16.667 new_target=50.000 --> // tick(), PostDelayedTask(floor(50.000-37)) --> PostDelayedTask(13) base::TimeTicks DelayBasedTimeSource::NextTickTarget(base::TimeTicks now) { const base::TimeDelta epsilon(base::TimeDelta::FromMicroseconds(1)); base::TimeDelta new_interval = next_parameters_.interval; int intervals_elapsed = (now - next_parameters_.tick_target + new_interval - epsilon) / new_interval; base::TimeTicks new_tick_target = next_parameters_.tick_target + new_interval * intervals_elapsed; DCHECK(now <= new_tick_target) << "now = " << now.ToInternalValue() << "; new_tick_target = " << new_tick_target.ToInternalValue() << "; new_interval = " << new_interval.InMicroseconds() << "; tick_target = " << next_parameters_.tick_target.ToInternalValue() << "; intervals_elapsed = " << intervals_elapsed; // Avoid double ticks when: // 1) Turning off the timer and turning it right back on. // 2) Jittery data is passed to SetTimebaseAndInterval(). if (new_tick_target - last_tick_time_ <= new_interval / kDoubleTickDivisor) new_tick_target += new_interval; return new_tick_target; } void DelayBasedTimeSource::PostNextTickTask(base::TimeTicks now) { base::TimeTicks new_tick_target = NextTickTarget(now); // Post another task *before* the tick and update state base::TimeDelta delay; if (now <= new_tick_target) delay = new_tick_target - now; task_runner_->PostDelayedTask(FROM_HERE, base::Bind(&DelayBasedTimeSource::OnTimerFired, weak_factory_.GetWeakPtr()), delay); next_parameters_.tick_target = new_tick_target; current_parameters_ = next_parameters_; } } // namespace cc