// Copyright 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "cc/scheduler/delay_based_time_source.h" #include #include #include #include "base/bind.h" #include "base/location.h" #include "base/logging.h" #include "base/single_thread_task_runner.h" #include "base/trace_event/trace_event.h" #include "base/trace_event/trace_event_argument.h" namespace cc { namespace { // kIntervalChangeThreshold is the fraction of the interval that will trigger an // immediate interval change. kPhaseChangeThreshold is the fraction of the // interval that will trigger an immediate phase change. If the changes are // within the thresholds, the change will take place on the next tick. If // either change is outside the thresholds, the next tick will be canceled and // reissued immediately. static const double kIntervalChangeThreshold = 0.25; static const double kPhaseChangeThreshold = 0.25; } // namespace // The following methods correspond to the DelayBasedTimeSource that uses // the base::TimeTicks::Now as the timebase. DelayBasedTimeSource::DelayBasedTimeSource( base::TimeDelta interval, base::SingleThreadTaskRunner* task_runner) : client_(nullptr), active_(false), timebase_(base::TimeTicks()), interval_(interval), last_tick_time_(base::TimeTicks() - interval), next_tick_time_(base::TimeTicks()), task_runner_(task_runner), weak_factory_(this) { DCHECK_GT(interval, base::TimeDelta()); } DelayBasedTimeSource::~DelayBasedTimeSource() {} void DelayBasedTimeSource::SetActive(bool active) { TRACE_EVENT1("cc", "DelayBasedTimeSource::SetActive", "active", active); if (active == active_) return; active_ = active; if (active_) { PostNextTickTask(Now()); } else { last_tick_time_ = base::TimeTicks(); next_tick_time_ = base::TimeTicks(); tick_closure_.Cancel(); } } base::TimeDelta DelayBasedTimeSource::Interval() const { return interval_; } bool DelayBasedTimeSource::Active() const { return active_; } base::TimeTicks DelayBasedTimeSource::LastTickTime() const { return last_tick_time_; } base::TimeTicks DelayBasedTimeSource::NextTickTime() const { return next_tick_time_; } void DelayBasedTimeSource::OnTimerTick() { DCHECK(active_); last_tick_time_ = next_tick_time_; PostNextTickTask(Now()); // Fire the tick. if (client_) client_->OnTimerTick(); } void DelayBasedTimeSource::SetClient(DelayBasedTimeSourceClient* client) { client_ = client; } void DelayBasedTimeSource::SetTimebaseAndInterval(base::TimeTicks timebase, base::TimeDelta interval) { DCHECK_GT(interval, base::TimeDelta()); // If the change in interval is larger than the change threshold, // request an immediate reset. double interval_delta = std::abs((interval - interval_).InSecondsF()); // Comparing with next_tick_time_ is the right thing to do because we want to // know if we want to cancel the existing tick task and schedule a new one. // Also next_tick_time_ = timebase_ mod interval_. double timebase_delta = std::abs((timebase - next_tick_time_).InSecondsF()); interval_ = interval; timebase_ = timebase; // If we aren't active, there's no need to reset the timer. if (!active_) return; double interval_change = interval_delta / interval.InSecondsF(); if (interval_change > kIntervalChangeThreshold) { TRACE_EVENT_INSTANT0("cc", "DelayBasedTimeSource::IntervalChanged", TRACE_EVENT_SCOPE_THREAD); PostNextTickTask(Now()); return; } // If the change in phase is greater than the change threshold in either // direction, request an immediate reset. This logic might result in a false // negative if there is a simultaneous small change in the interval and the // fmod just happens to return something near zero. Assuming the timebase // is very recent though, which it should be, we'll still be ok because the // old clock and new clock just happen to line up. double phase_change = fmod(timebase_delta, interval.InSecondsF()) / interval.InSecondsF(); if (phase_change > kPhaseChangeThreshold && phase_change < (1.0 - kPhaseChangeThreshold)) { TRACE_EVENT_INSTANT0("cc", "DelayBasedTimeSource::PhaseChanged", TRACE_EVENT_SCOPE_THREAD); PostNextTickTask(Now()); return; } } base::TimeTicks DelayBasedTimeSource::Now() const { return base::TimeTicks::Now(); } // This code tries to achieve an average tick rate as close to interval_ as // possible. To do this, it has to deal with a few basic issues: // 1. PostDelayedTask can delay only at a millisecond granularity. So, 16.666 // has to posted as 16 or 17. // 2. A delayed task may come back a bit late (a few ms), or really late // (frames later) // // The basic idea with this scheduler here is to keep track of where we *want* // to run in tick_target_. We update this with the exact interval. // // Then, when we post our task, we take the floor of (tick_target_ and Now()). // If we started at now=0, and 60FPs (all times in milliseconds): // now=0 target=16.667 PostDelayedTask(16) // // When our callback runs, we figure out how far off we were from that goal. // Because of the flooring operation, and assuming our timer runs exactly when // it should, this yields: // now=16 target=16.667 // // Since we can't post a 0.667 ms task to get to now=16, we just treat this as a // tick. Then, we update target to be 33.333. We now post another task based on // the difference between our target and now: // now=16 tick_target=16.667 new_target=33.333 --> // PostDelayedTask(floor(33.333 - 16)) --> PostDelayedTask(17) // // Over time, with no late tasks, this leads to us posting tasks like this: // now=0 tick_target=0 new_target=16.667 --> // tick(), PostDelayedTask(16) // now=16 tick_target=16.667 new_target=33.333 --> // tick(), PostDelayedTask(17) // now=33 tick_target=33.333 new_target=50.000 --> // tick(), PostDelayedTask(17) // now=50 tick_target=50.000 new_target=66.667 --> // tick(), PostDelayedTask(16) // // We treat delays in tasks differently depending on the amount of delay we // encounter. Suppose we posted a task with a target=16.667: // Case 1: late but not unrecoverably-so // now=18 tick_target=16.667 // // Case 2: so late we obviously missed the tick // now=25.0 tick_target=16.667 // // We treat the first case as a tick anyway, and assume the delay was unusual. // Thus, we compute the new_target based on the old timebase: // now=18 tick_target=16.667 new_target=33.333 --> // tick(), PostDelayedTask(floor(33.333-18)) --> PostDelayedTask(15) // This brings us back to 18+15 = 33, which was where we would have been if the // task hadn't been late. // // For the really late delay, we we move to the next logical tick. The timebase // is not reset. // now=37 tick_target=16.667 new_target=50.000 --> // tick(), PostDelayedTask(floor(50.000-37)) --> PostDelayedTask(13) void DelayBasedTimeSource::PostNextTickTask(base::TimeTicks now) { next_tick_time_ = now.SnappedToNextTick(timebase_, interval_); if (next_tick_time_ == now) next_tick_time_ += interval_; DCHECK_GT(next_tick_time_, now); tick_closure_.Reset(base::Bind(&DelayBasedTimeSource::OnTimerTick, weak_factory_.GetWeakPtr())); task_runner_->PostDelayedTask(FROM_HERE, tick_closure_.callback(), next_tick_time_ - now); } std::string DelayBasedTimeSource::TypeString() const { return "DelayBasedTimeSource"; } void DelayBasedTimeSource::AsValueInto( base::trace_event::TracedValue* state) const { state->SetString("type", TypeString()); state->SetDouble("last_tick_time_us", LastTickTime().ToInternalValue()); state->SetDouble("next_tick_time_us", NextTickTime().ToInternalValue()); state->SetDouble("interval_us", interval_.InMicroseconds()); state->SetDouble("timebase_us", timebase_.ToInternalValue()); state->SetBoolean("active", active_); } } // namespace cc