// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include #include "base/logging.h" #include "cc/base/math_util.h" #include "cc/trees/property_tree.h" namespace cc { template PropertyTree::PropertyTree() : needs_update_(false) { nodes_.push_back(T()); back()->id = 0; back()->parent_id = -1; } template PropertyTree::~PropertyTree() { } TransformTree::TransformTree() : source_to_parent_updates_allowed_(true) { } template int PropertyTree::Insert(const T& tree_node, int parent_id) { DCHECK_GT(nodes_.size(), 0u); nodes_.push_back(tree_node); T& node = nodes_.back(); node.parent_id = parent_id; node.id = static_cast(nodes_.size()) - 1; return node.id; } template void PropertyTree::clear() { nodes_.clear(); nodes_.push_back(T()); back()->id = 0; back()->parent_id = -1; } template class PropertyTree; template class PropertyTree; template class PropertyTree; TransformNodeData::TransformNodeData() : target_id(-1), content_target_id(-1), source_node_id(-1), needs_local_transform_update(true), is_invertible(true), ancestors_are_invertible(true), is_animated(false), to_screen_is_animated(false), flattens_inherited_transform(false), node_and_ancestors_are_flat(true), scrolls(false), needs_sublayer_scale(false), layer_scale_factor(1.0f), post_local_scale_factor(1.0f) { } TransformNodeData::~TransformNodeData() { } void TransformNodeData::update_pre_local_transform( const gfx::Point3F& transform_origin) { pre_local.MakeIdentity(); pre_local.Translate3d(-transform_origin.x(), -transform_origin.y(), -transform_origin.z()); } void TransformNodeData::update_post_local_transform( const gfx::PointF& position, const gfx::Point3F& transform_origin) { post_local.MakeIdentity(); post_local.Scale(post_local_scale_factor, post_local_scale_factor); post_local.Translate3d( position.x() + source_offset.x() + transform_origin.x(), position.y() + source_offset.y() + transform_origin.y(), transform_origin.z()); } ClipNodeData::ClipNodeData() : transform_id(-1), target_id(-1) { } bool TransformTree::ComputeTransform(int source_id, int dest_id, gfx::Transform* transform) const { transform->MakeIdentity(); if (source_id == dest_id) return true; if (source_id > dest_id) { return CombineTransformsBetween(source_id, dest_id, transform); } return CombineInversesBetween(source_id, dest_id, transform); } bool TransformTree::ComputeTransformWithDestinationSublayerScale( int source_id, int dest_id, gfx::Transform* transform) const { bool success = ComputeTransform(source_id, dest_id, transform); const TransformNode* dest_node = Node(dest_id); if (!dest_node->data.needs_sublayer_scale) return success; transform->matrix().postScale(dest_node->data.sublayer_scale.x(), dest_node->data.sublayer_scale.y(), 1.f); return success; } bool TransformTree::ComputeTransformWithSourceSublayerScale( int source_id, int dest_id, gfx::Transform* transform) const { bool success = ComputeTransform(source_id, dest_id, transform); const TransformNode* source_node = Node(source_id); if (!source_node->data.needs_sublayer_scale) return success; transform->Scale(1.f / source_node->data.sublayer_scale.x(), 1.f / source_node->data.sublayer_scale.y()); return success; } bool TransformTree::Are2DAxisAligned(int source_id, int dest_id) const { gfx::Transform transform; return ComputeTransform(source_id, dest_id, &transform) && transform.Preserves2dAxisAlignment(); } bool TransformTree::NeedsSourceToParentUpdate(TransformNode* node) { return (source_to_parent_updates_allowed() && node->parent_id != node->data.source_node_id); } void TransformTree::UpdateTransforms(int id) { TransformNode* node = Node(id); TransformNode* parent_node = parent(node); TransformNode* target_node = Node(node->data.target_id); if (node->data.needs_local_transform_update || NeedsSourceToParentUpdate(node)) UpdateLocalTransform(node); UpdateScreenSpaceTransform(node, parent_node, target_node); UpdateSublayerScale(node); UpdateTargetSpaceTransform(node, target_node); UpdateIsAnimated(node, parent_node); UpdateSnapping(node); } bool TransformTree::IsDescendant(int desc_id, int source_id) const { while (desc_id != source_id) { if (desc_id < 0) return false; desc_id = Node(desc_id)->parent_id; } return true; } bool TransformTree::CombineTransformsBetween(int source_id, int dest_id, gfx::Transform* transform) const { DCHECK(source_id > dest_id); const TransformNode* current = Node(source_id); const TransformNode* dest = Node(dest_id); // Combine transforms to and from the screen when possible. Since flattening // is a non-linear operation, we cannot use this approach when there is // non-trivial flattening between the source and destination nodes. For // example, consider the tree R->A->B->C, where B flattens its inherited // transform, and A has a non-flat transform. Suppose C is the source and A is // the destination. The expected result is C * B. But C's to_screen // transform is C * B * flattened(A * R), and A's from_screen transform is // R^{-1} * A^{-1}. If at least one of A and R isn't flat, the inverse of // flattened(A * R) won't be R^{-1} * A{-1}, so multiplying C's to_screen and // A's from_screen will not produce the correct result. if (!dest || (dest->data.ancestors_are_invertible && dest->data.node_and_ancestors_are_flat)) { transform->ConcatTransform(current->data.to_screen); if (dest) transform->ConcatTransform(dest->data.from_screen); return true; } // Flattening is defined in a way that requires it to be applied while // traversing downward in the tree. We first identify nodes that are on the // path from the source to the destination (this is traversing upward), and // then we visit these nodes in reverse order, flattening as needed. We // early-out if we get to a node whose target node is the destination, since // we can then re-use the target space transform stored at that node. std::vector source_to_destination; source_to_destination.push_back(current->id); current = parent(current); for (; current && current->id > dest_id; current = parent(current)) { if (current->data.target_id == dest_id && current->data.content_target_id == dest_id) break; source_to_destination.push_back(current->id); } gfx::Transform combined_transform; if (current->id > dest_id) { combined_transform = current->data.to_target; // The stored target space transform has sublayer scale baked in, but we // need the unscaled transform. combined_transform.Scale(1.0f / dest->data.sublayer_scale.x(), 1.0f / dest->data.sublayer_scale.y()); } else if (current->id < dest_id) { // We have reached the lowest common ancestor of the source and destination // nodes. This case can occur when we are transforming between a node // corresponding to a fixed-position layer (or its descendant) and the node // corresponding to the layer's render target. For example, consider the // layer tree R->T->S->F where F is fixed-position, S owns a render surface, // and T has a significant transform. This will yield the following // transform tree: // R // | // T // /| // S F // In this example, T will have id 2, S will have id 3, and F will have id // 4. When walking up the ancestor chain from F, the first node with a // smaller id than S will be T, the lowest common ancestor of these nodes. // We compute the transform from T to S here, and then from F to T in the // loop below. DCHECK(IsDescendant(dest_id, current->id)); CombineInversesBetween(current->id, dest_id, &combined_transform); DCHECK(combined_transform.IsApproximatelyIdentityOrTranslation( SkDoubleToMScalar(1e-4))); } size_t source_to_destination_size = source_to_destination.size(); for (size_t i = 0; i < source_to_destination_size; ++i) { size_t index = source_to_destination_size - 1 - i; const TransformNode* node = Node(source_to_destination[index]); if (node->data.flattens_inherited_transform) combined_transform.FlattenTo2d(); combined_transform.PreconcatTransform(node->data.to_parent); } transform->ConcatTransform(combined_transform); return true; } bool TransformTree::CombineInversesBetween(int source_id, int dest_id, gfx::Transform* transform) const { DCHECK(source_id < dest_id); const TransformNode* current = Node(dest_id); const TransformNode* dest = Node(source_id); // Just as in CombineTransformsBetween, we can use screen space transforms in // this computation only when there isn't any non-trivial flattening // involved. if (current->data.ancestors_are_invertible && current->data.node_and_ancestors_are_flat) { transform->PreconcatTransform(current->data.from_screen); if (dest) transform->PreconcatTransform(dest->data.to_screen); return true; } // Inverting a flattening is not equivalent to flattening an inverse. This // means we cannot, for example, use the inverse of each node's to_parent // transform, flattening where needed. Instead, we must compute the transform // from the destination to the source, with flattening, and then invert the // result. gfx::Transform dest_to_source; CombineTransformsBetween(dest_id, source_id, &dest_to_source); gfx::Transform source_to_dest; bool all_are_invertible = dest_to_source.GetInverse(&source_to_dest); transform->PreconcatTransform(source_to_dest); return all_are_invertible; } void TransformTree::UpdateLocalTransform(TransformNode* node) { gfx::Transform transform = node->data.post_local; if (NeedsSourceToParentUpdate(node)) { gfx::Transform to_parent; ComputeTransform(node->data.source_node_id, node->parent_id, &to_parent); node->data.source_to_parent = to_parent.To2dTranslation(); } transform.Translate( node->data.source_to_parent.x() - node->data.scroll_offset.x(), node->data.source_to_parent.y() - node->data.scroll_offset.y()); transform.PreconcatTransform(node->data.local); transform.PreconcatTransform(node->data.pre_local); node->data.set_to_parent(transform); node->data.needs_local_transform_update = false; } void TransformTree::UpdateScreenSpaceTransform(TransformNode* node, TransformNode* parent_node, TransformNode* target_node) { if (!parent_node) { node->data.to_screen = node->data.to_parent; node->data.ancestors_are_invertible = true; node->data.to_screen_is_animated = false; node->data.node_and_ancestors_are_flat = node->data.to_parent.IsFlat(); } else { node->data.to_screen = parent_node->data.to_screen; if (node->data.flattens_inherited_transform) node->data.to_screen.FlattenTo2d(); node->data.to_screen.PreconcatTransform(node->data.to_parent); node->data.ancestors_are_invertible = parent_node->data.ancestors_are_invertible; node->data.node_and_ancestors_are_flat = parent_node->data.node_and_ancestors_are_flat && node->data.to_parent.IsFlat(); } if (!node->data.to_screen.GetInverse(&node->data.from_screen)) node->data.ancestors_are_invertible = false; } void TransformTree::UpdateSublayerScale(TransformNode* node) { // The sublayer scale depends on the screen space transform, so update it too. node->data.sublayer_scale = node->data.needs_sublayer_scale ? MathUtil::ComputeTransform2dScaleComponents( node->data.to_screen, node->data.layer_scale_factor) : gfx::Vector2dF(1.0f, 1.0f); } void TransformTree::UpdateTargetSpaceTransform(TransformNode* node, TransformNode* target_node) { if (node->data.needs_sublayer_scale) { node->data.to_target.MakeIdentity(); node->data.to_target.Scale(node->data.sublayer_scale.x(), node->data.sublayer_scale.y()); } else { const bool target_is_root_surface = target_node->id == 1; // In order to include the root transform for the root surface, we walk up // to the root of the transform tree in ComputeTransform. int target_id = target_is_root_surface ? 0 : target_node->id; ComputeTransformWithDestinationSublayerScale(node->id, target_id, &node->data.to_target); } if (!node->data.to_target.GetInverse(&node->data.from_target)) node->data.ancestors_are_invertible = false; } void TransformTree::UpdateIsAnimated(TransformNode* node, TransformNode* parent_node) { if (parent_node) { node->data.to_screen_is_animated = node->data.is_animated || parent_node->data.to_screen_is_animated; } } void TransformTree::UpdateSnapping(TransformNode* node) { if (!node->data.scrolls || node->data.to_screen_is_animated || !node->data.to_target.IsScaleOrTranslation()) { return; } // Scroll snapping must be done in target space (the pixels we care about). // This means we effectively snap the target space transform. If TT is the // target space transform and TT' is TT with its translation components // rounded, then what we're after is the scroll delta X, where TT * X = TT'. // I.e., we want a transform that will realize our scroll snap. It follows // that X = TT^-1 * TT'. We cache TT and TT^-1 to make this more efficient. gfx::Transform rounded = node->data.to_target; rounded.RoundTranslationComponents(); gfx::Transform delta = node->data.from_target; delta *= rounded; DCHECK(delta.IsApproximatelyIdentityOrTranslation(SkDoubleToMScalar(1e-4))) << delta.ToString(); gfx::Vector2dF translation = delta.To2dTranslation(); // Now that we have our scroll delta, we must apply it to each of our // combined, to/from matrices. node->data.to_parent.Translate(translation.x(), translation.y()); node->data.to_target.Translate(translation.x(), translation.y()); node->data.from_target.matrix().postTranslate(-translation.x(), -translation.y(), 0); node->data.to_screen.Translate(translation.x(), translation.y()); node->data.from_screen.matrix().postTranslate(-translation.x(), -translation.y(), 0); node->data.scroll_snap = translation; } PropertyTrees::PropertyTrees() : needs_rebuild(true), sequence_number(0) { } } // namespace cc