// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "chrome/browser/autocomplete/keyword_provider.h" #include #include #include "base/string_util.h" #include "chrome/browser/profile.h" #include "chrome/browser/search_engines/template_url.h" #include "chrome/browser/search_engines/template_url_model.h" #include "chrome/common/l10n_util.h" #include "grit/generated_resources.h" #include "net/base/escape.h" #include "net/base/net_util.h" // static std::wstring KeywordProvider::SplitReplacementStringFromInput( const std::wstring& input) { // The input may contain leading whitespace, strip it. std::wstring trimmed_input; TrimWhitespace(input, TRIM_LEADING, &trimmed_input); // And extract the replacement string. std::wstring remaining_input; SplitKeywordFromInput(trimmed_input, &remaining_input); return remaining_input; } KeywordProvider::KeywordProvider(ACProviderListener* listener, Profile* profile) : AutocompleteProvider(listener, profile, "Keyword"), model_(NULL) { } KeywordProvider::KeywordProvider(ACProviderListener* listener, TemplateURLModel* model) : AutocompleteProvider(listener, NULL, "Keyword"), model_(model) { } namespace { // Helper functor for Start(), for sorting keyword matches by quality. class CompareQuality { public: // A keyword is of higher quality when a greater fraction of it has been // typed, that is, when it is shorter. // // TODO(pkasting): http://b/740691 Most recent and most frequent keywords are // probably better rankings than the fraction of the keyword typed. We should // always put any exact matches first no matter what, since the code in // Start() assumes this (and it makes sense). bool operator()(const std::wstring& keyword1, const std::wstring& keyword2) const { return keyword1.length() < keyword2.length(); } }; } // namespace void KeywordProvider::Start(const AutocompleteInput& input, bool minimal_changes) { matches_.clear(); if ((input.type() == AutocompleteInput::INVALID) || (input.type() == AutocompleteInput::FORCED_QUERY)) return; // Split user input into a keyword and some query input. // // We want to suggest keywords even when users have started typing URLs, on // the assumption that they might not realize they no longer need to go to a // site to be able to search it. So we call CleanUserInputKeyword() to strip // any initial scheme and/or "www.". NOTE: Any heuristics or UI used to // automatically/manually create keywords will need to be in sync with // whatever we do here! // // TODO(pkasting): http://b/1112681 If someday we remember usage frequency for // keywords, we might suggest keywords that haven't even been partially typed, // if the user uses them enough and isn't obviously typing something else. In // this case we'd consider all input here to be query input. std::wstring remaining_input; std::wstring keyword(TemplateURLModel::CleanUserInputKeyword( SplitKeywordFromInput(input.text(), &remaining_input))); if (keyword.empty()) return; // Make sure the model is loaded. This is cheap and quickly bails out if // the model is already loaded. TemplateURLModel* model = profile_ ? profile_->GetTemplateURLModel() : model_; DCHECK(model); model->Load(); // Get the best matches for this keyword. // // NOTE: We could cache the previous keywords and reuse them here in the // |minimal_changes| case, but since we'd still have to recalculate their // relevances and we can just recreate the results synchronously anyway, we // don't bother. // // TODO(pkasting): http://b/893701 We should remember the user's use of a // search query both from the autocomplete popup and from web pages // themselves. std::vector keyword_matches; model->FindMatchingKeywords(keyword, !remaining_input.empty(), &keyword_matches); if (keyword_matches.empty()) return; std::sort(keyword_matches.begin(), keyword_matches.end(), CompareQuality()); // Limit to one exact or three inexact matches, and mark them up for display // in the autocomplete popup. // Any exact match is going to be the highest quality match, and thus at the // front of our vector. if (keyword_matches.front() == keyword) { matches_.push_back(CreateAutocompleteMatch(model, keyword, input, keyword.length(), remaining_input)); } else { if (keyword_matches.size() > max_matches()) { keyword_matches.erase(keyword_matches.begin() + max_matches(), keyword_matches.end()); } for (std::vector::const_iterator i(keyword_matches.begin()); i != keyword_matches.end(); ++i) { matches_.push_back(CreateAutocompleteMatch(model, *i, input, keyword.length(), remaining_input)); } } } // static std::wstring KeywordProvider::SplitKeywordFromInput( const std::wstring& input, std::wstring* remaining_input) { // Find end of first token. The AutocompleteController has trimmed leading // whitespace, so we need not skip over that. const size_t first_white(input.find_first_of(kWhitespaceWide)); DCHECK(first_white != 0); if (first_white == std::wstring::npos) return input; // Only one token provided. // Set |remaining_input| to everything after the first token. DCHECK(remaining_input != NULL); const size_t first_nonwhite(input.find_first_not_of(kWhitespaceWide, first_white)); if (first_nonwhite != std::wstring::npos) remaining_input->assign(input.begin() + first_nonwhite, input.end()); // Return first token as keyword. return input.substr(0, first_white); } // static void KeywordProvider::FillInURLAndContents( const std::wstring& remaining_input, const TemplateURL* element, AutocompleteMatch* match) { DCHECK(!element->short_name().empty()); DCHECK(element->url()); DCHECK(element->url()->IsValid()); if (remaining_input.empty()) { if (element->url()->SupportsReplacement()) { // No query input; return a generic, no-destination placeholder. match->contents.assign(l10n_util::GetStringF(IDS_KEYWORD_SEARCH, element->short_name(), l10n_util::GetString(IDS_EMPTY_KEYWORD_VALUE))); match->contents_class.push_back( ACMatchClassification(0, ACMatchClassification::DIM)); } else { // Keyword that has no replacement text (aka a shorthand for a URL). match->destination_url = GURL(WideToUTF8(element->url()->url())); match->contents.assign(element->short_name()); AutocompleteMatch::ClassifyLocationInString(0, match->contents.length(), match->contents.length(), ACMatchClassification::NONE, &match->contents_class); } } else { // Create destination URL by escaping user input and substituting into // keyword template URL. The escaping here handles whitespace in user // input, but we rely on later canonicalization functions to do more // fixup to make the URL valid if necessary. DCHECK(element->url()->SupportsReplacement()); match->destination_url = element->url()->ReplaceSearchTerms( *element, remaining_input, TemplateURLRef::NO_SUGGESTIONS_AVAILABLE, std::wstring()); std::vector content_param_offsets; match->contents.assign(l10n_util::GetStringF(IDS_KEYWORD_SEARCH, element->short_name(), remaining_input, &content_param_offsets)); if (content_param_offsets.size() == 2) { AutocompleteMatch::ClassifyLocationInString(content_param_offsets[1], remaining_input.length(), match->contents.length(), ACMatchClassification::NONE, &match->contents_class); } else { // See comments on an identical NOTREACHED() in search_provider.cc. NOTREACHED(); } } } // static int KeywordProvider::CalculateRelevance(AutocompleteInput::Type type, bool complete, bool no_query_text_needed) { if (complete && no_query_text_needed) return 1500; switch (type) { case AutocompleteInput::UNKNOWN: case AutocompleteInput::REQUESTED_URL: return complete ? 1100 : 450; case AutocompleteInput::URL: return complete ? 1100 : 700; case AutocompleteInput::QUERY: return complete ? 1400 : 650; default: NOTREACHED(); return 0; } } AutocompleteMatch KeywordProvider::CreateAutocompleteMatch( TemplateURLModel* model, const std::wstring keyword, const AutocompleteInput& input, size_t prefix_length, const std::wstring& remaining_input) { DCHECK(model); // Get keyword data from data store. const TemplateURL* element(model->GetTemplateURLForKeyword(keyword)); DCHECK(element && element->url()); const bool supports_replacement = element->url()->SupportsReplacement(); // Create an edit entry of "[keyword] [remaining input]". This is helpful // even when [remaining input] is empty, as the user can select the popup // choice and immediately begin typing in query input. const bool keyword_complete = (prefix_length == keyword.length()); AutocompleteMatch result(this, CalculateRelevance(input.type(), keyword_complete, // When the user wants keyword matches to take // preference, score them highly regardless of whether // the input provides query text. input.prefer_keyword() || !supports_replacement), false, supports_replacement ? AutocompleteMatch::SEARCH_OTHER_ENGINE : AutocompleteMatch::HISTORY_KEYWORD); result.fill_into_edit.assign(keyword); if (!remaining_input.empty() || !keyword_complete || supports_replacement) result.fill_into_edit.push_back(L' '); result.fill_into_edit.append(remaining_input); if (!input.prevent_inline_autocomplete() && (keyword_complete || remaining_input.empty())) result.inline_autocomplete_offset = input.text().length(); // Create destination URL and popup entry content by substituting user input // into keyword templates. FillInURLAndContents(remaining_input, element, &result); // Create popup entry description based on the keyword name. result.description.assign(l10n_util::GetStringF( IDS_AUTOCOMPLETE_KEYWORD_DESCRIPTION, keyword)); if (supports_replacement) result.template_url = element; static const std::wstring kKeywordDesc(l10n_util::GetString( IDS_AUTOCOMPLETE_KEYWORD_DESCRIPTION)); AutocompleteMatch::ClassifyLocationInString(kKeywordDesc.find(L"%s"), prefix_length, result.description.length(), ACMatchClassification::DIM, &result.description_class); // Keyword searches don't look like URLs. result.transition = PageTransition::GENERATED; return result; }