// Copyright (c) 2010 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // This file is based on the SMSLib library. // // SMSLib Sudden Motion Sensor Access Library // Copyright (c) 2010 Suitable Systems // All rights reserved. // // Developed by: Daniel Griscom // Suitable Systems // http://www.suitable.com // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the // "Software"), to deal with the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to // permit persons to whom the Software is furnished to do so, subject to // the following conditions: // // - Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimers. // // - Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimers in the // documentation and/or other materials provided with the distribution. // // - Neither the names of Suitable Systems nor the names of its // contributors may be used to endorse or promote products derived from // this Software without specific prior written permission. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. // IN NO EVENT SHALL THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR // ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, // TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE // SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE SOFTWARE. // // For more information about SMSLib, see // // or contact // Daniel Griscom // Suitable Systems // 1 Centre Street, Suite 204 // Wakefield, MA 01880 // (781) 665-0053 #include "chrome/browser/device_orientation/accelerometer_mac.h" #include // For isfinite. #include #include "base/logging.h" #include "base/scoped_ptr.h" #include "chrome/browser/device_orientation/orientation.h" namespace device_orientation { struct AccelerometerMac::GenericMacbookSensor { // Name of device to be read. const char* service_name; // Number of bytes of the axis data. int axis_size; // Default calibration value for zero g. float zero_g; // Default calibration value for one g (negative when axis is inverted). float one_g; // Kernel function index. unsigned int function; // Size of the sensor record to be sent/received. unsigned int record_size; }; struct AccelerometerMac::AxisData { // Location of the first byte representing the axis in the sensor data. int index; // Axis inversion flag. The value changes often between models. bool inverted; }; // Sudden Motion Sensor descriptor. struct AccelerometerMac::SensorDescriptor { // Prefix of model to be tested. const char* model_name; // Axis-specific data (x,y,z order). AxisData axis[3]; }; // Typical sensor parameters in MacBook models. const AccelerometerMac::GenericMacbookSensor AccelerometerMac::kGenericSensor = { "SMCMotionSensor", 2, 0, 251, 5, 40 }; // Supported sensor descriptors. Add entries here to enhance compatibility. // All non-tested entries from SMSLib have been removed. const AccelerometerMac::SensorDescriptor AccelerometerMac::kSupportedSensors[] = { // Tested by leandrogracia on a 15'' MacBook Pro. { "MacBookPro2,2", { { 0, true }, { 2, true }, { 4, false } } }, // Tested by leandrogracia on a 15'' MacBook Pro. { "MacBookPro3,1", { { 0, false }, { 2, true }, { 4, true } } }, // Tested by leandrogracia on a 15'' MacBook Pro. { "MacBookPro4,1", { { 0, true }, { 2, true }, { 4, false } } }, // Tested by leandrogracia on a 15'' MacBook Pro. { "MacBookPro5,1", { { 0, false }, { 2, false }, { 4, false } } }, // Tested by leandrogracia on a 15'' MacBook Pro. { "MacBookPro5,4", { { 0, false }, { 2, false }, { 4, false } } }, // Tested by leandrogracia on a 13'' MacBook Pro. { "MacBookPro5,5", { { 0, true }, { 2, true }, { 4, false } } }, // Tested by leandrogracia on a 15'' MacBook Pro. { "MacBookPro6,2", { { 0, true }, { 2, false }, { 4, true } } }, // Tested by leandrogracia on a 13'' MacBook Pro. { "MacBookPro7,1", { { 0, true }, { 2, true }, { 4, false } } }, // Generic MacBook accelerometer sensor data. // Added for compatibility with non-tested models // Note: there may be problems with inverted axes. { "", { { 0, true }, { 2, true }, { 4, false } } } }; // Create a AccelerometerMac object and return NULL if no valid sensor found. DataFetcher* AccelerometerMac::Create() { scoped_ptr accelerometer(new AccelerometerMac); return accelerometer->Init() ? accelerometer.release() : NULL; } AccelerometerMac::~AccelerometerMac() { IOServiceClose(io_connection_); } AccelerometerMac::AccelerometerMac() : sensor_(NULL), io_connection_(0) { } // Retrieve per-axis accelerometer values. // // Axes and angles are defined according to the W3C DeviceOrientation Draft. // See here: http://dev.w3.org/geo/api/spec-source-orientation.html // // Note: only beta and gamma angles are provided. Alpha is set to zero. // // Returns false in case of error or non-properly initialized object. // bool AccelerometerMac::GetOrientation(Orientation* orientation) { DCHECK(sensor_); // Reset output record memory buffer. std::fill(output_record_.begin(), output_record_.end(), 0x00); // Read record data from memory. const size_t kInputSize = kGenericSensor.record_size; size_t output_size = kGenericSensor.record_size; if (IOConnectCallStructMethod(io_connection_, kGenericSensor.function, static_cast(&input_record_[0]), kInputSize, &output_record_[0], &output_size) != KERN_SUCCESS) { return false; } // Calculate per-axis calibrated values. float axis_value[3]; for (int i = 0; i < 3; ++i) { int sensor_value = 0; int size = kGenericSensor.axis_size; int index = sensor_->axis[i].index; // Important Note: little endian is assumed as this code is mac-only // and PowerPC is currently not supported. memcpy(&sensor_value, &output_record_[index], size); sensor_value = ExtendSign(sensor_value, size); // Correct value using the current calibration. axis_value[i] = static_cast(sensor_value - kGenericSensor.zero_g) / kGenericSensor.one_g; // Make sure we reject any NaN or infinite values. if (!isfinite(axis_value[i])) return false; // Clamp value to the [-1, 1] range. if (axis_value[i] < -1.0) axis_value[i] = -1.0; else if (axis_value[i] > 1.0) axis_value[i] = 1.0; // Apply axis inversion. if (sensor_->axis[i].inverted) axis_value[i] = -axis_value[i]; } // Transform the accelerometer values to W3C draft angles. // // Accelerometer values are just dot products of the sensor axes // by the gravity vector 'g' with the result for the z axis inverted. // // To understand this transformation calculate the 3rd row of the z-x-y // Euler angles rotation matrix (because of the 'g' vector, only 3rd row // affects to the result). Note that z-x-y matrix means R = Ry * Rx * Rz. // Then, assume alpha = 0 and you get this: // // x_acc = sin(gamma) // y_acc = - cos(gamma) * sin(beta) // z_acc = cos(beta) * cos(gamma) // // After that the rest is just a bit of trigonometry. // // Also note that alpha can't be provided but it's assumed to be always zero. // This is necessary in order to provide enough information to solve // the equations. // const double kRad2deg = 180.0 / M_PI; orientation->alpha_ = 0.0; orientation->beta_ = kRad2deg * atan2(-axis_value[1], axis_value[2]); orientation->gamma_ = kRad2deg * asin(axis_value[0]); // Make sure that the interval boundaries comply with the specification. if (orientation->beta_ >= 180.0) orientation->beta_ -= 360.0; if (orientation->gamma_ >= 90.0) orientation->gamma_ -= 180.0; DCHECK_GE(orientation->beta_, -180.0); DCHECK_LT(orientation->beta_, 180.0); DCHECK_GE(orientation->gamma_, -90.0); DCHECK_LT(orientation->gamma_, 90.0); orientation->can_provide_alpha_ = false; orientation->can_provide_beta_ = true; orientation->can_provide_gamma_ = true; return true; } // Probe the local hardware looking for a supported sensor device // and initialize an I/O connection to it. bool AccelerometerMac::Init() { // Allocate local variables for model name string (size from SMSLib). static const int kNameSize = 32; char local_model[kNameSize]; // Request model name to the kernel. size_t name_size = kNameSize; int params[2] = { CTL_HW, HW_MODEL }; if (sysctl(params, 2, local_model, &name_size, NULL, 0) != 0) return NULL; const SensorDescriptor* sensor_candidate = NULL; // Look for the current model in the supported sensor list. io_object_t device = 0; const int kNumSensors = arraysize(kSupportedSensors); for (int i = 0; i < kNumSensors; ++i) { // Check if the supported sensor model name is a prefix // of the local hardware model (empty names are accepted). const char* p1 = kSupportedSensors[i].model_name; for (const char* p2 = local_model; *p1 != '\0' && *p1 == *p2; ++p1, ++p2) continue; if (*p1 != '\0') continue; // Local hardware found in the supported sensor list. sensor_candidate = &kSupportedSensors[i]; // Get a dictionary of the services matching to the one in the sensor. CFMutableDictionaryRef dict = IOServiceMatching(kGenericSensor.service_name); if (dict == NULL) continue; // Get an iterator for the matching services. io_iterator_t device_iterator; if (IOServiceGetMatchingServices(kIOMasterPortDefault, dict, &device_iterator) != KERN_SUCCESS) { continue; } // Get the first device in the list. if ((device = IOIteratorNext(device_iterator)) == 0) continue; // Try to open device. kern_return_t result; result = IOServiceOpen(device, mach_task_self(), 0, &io_connection_); IOObjectRelease(device); if (result != KERN_SUCCESS || io_connection_ == 0) return false; // Local sensor service confirmed by IOKit. sensor_ = sensor_candidate; break; } if (sensor_ == NULL) return false; // Allocate and initialize input/output records. input_record_.resize(kGenericSensor.record_size, 0x01); output_record_.resize(kGenericSensor.record_size, 0x00); // Try to retrieve the current orientation. Orientation test_orientation; return GetOrientation(&test_orientation); } // Extend the sign of an integer of less than 32 bits to a 32-bit integer. int AccelerometerMac::ExtendSign(int value, size_t size) { switch (size) { case 1: if (value & 0x00000080) return value | 0xffffff00; break; case 2: if (value & 0x00008000) return value | 0xffff0000; break; case 3: if (value & 0x00800000) return value | 0xff000000; break; default: LOG(FATAL) << "Invalid integer size for sign extension: " << size; } return value; } } // namespace device_orientation