// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef CHROME_BROWSER_HISTORY_HISTORY_H__ #define CHROME_BROWSER_HISTORY_HISTORY_H__ #include #include #include #include "base/basictypes.h" #include "base/gfx/rect.h" #include "base/lock.h" #include "base/ref_counted.h" #include "base/scoped_ptr.h" #include "base/task.h" #include "base/time.h" #include "chrome/browser/cancelable_request.h" #include "chrome/browser/history/history_notifications.h" #include "chrome/browser/history/history_types.h" #include "chrome/browser/search_engines/template_url.h" #include "chrome/common/notification_observer.h" #include "chrome/common/page_transition_types.h" #include "chrome/common/ref_counted_util.h" class BookmarkService; class ChromeThread; struct DownloadCreateInfo; class FilePath; class GURL; class HistoryURLProvider; struct HistoryURLProviderParams; class InMemoryURLDatabase; class MainPagesRequest; class PageUsageData; class PageUsageRequest; class Profile; class SkBitmap; struct ThumbnailScore; namespace history { class InMemoryHistoryBackend; class HistoryBackend; class HistoryDatabase; class HistoryQueryTest; class URLDatabase; } // namespace history // HistoryDBTask can be used to process arbitrary work on the history backend // thread. HistoryDBTask is scheduled using HistoryService::ScheduleDBTask. // When HistoryBackend processes the task it invokes RunOnDBThread. Once the // task completes and has not been canceled, DoneRunOnMainThread is invoked back // on the main thread. class HistoryDBTask : public base::RefCountedThreadSafe { public: virtual ~HistoryDBTask() {} // Invoked on the database thread. The return value indicates whether the // task is done. A return value of true signals the task is done and // RunOnDBThread should NOT be invoked again. A return value of false // indicates the task is not done, and should be run again after other // tasks are given a chance to be processed. virtual bool RunOnDBThread(history::HistoryBackend* backend, history::HistoryDatabase* db) = 0; // Invoked on the main thread once RunOnDBThread has returned false. This is // only invoked if the request was not canceled and returned true from // RunOnDBThread. virtual void DoneRunOnMainThread() = 0; }; // The history service records page titles, and visit times, as well as // (eventually) information about autocomplete. // // This service is thread safe. Each request callback is invoked in the // thread that made the request. class HistoryService : public CancelableRequestProvider, public NotificationObserver, public base::RefCountedThreadSafe { public: // Miscellaneous commonly-used types. typedef std::vector RedirectList; typedef std::vector PageUsageDataList; // ID (both star_id and group_id) of the bookmark bar. // This entry always exists. static const history::StarID kBookmarkBarID; // Must call Init after construction. explicit HistoryService(Profile* profile); // The empty constructor is provided only for testing. HistoryService(); ~HistoryService(); // Initializes the history service, returning true on success. On false, do // not call any other functions. The given directory will be used for storing // the history files. The BookmarkService is used when deleting URLs to // test if a URL is bookmarked; it may be NULL during testing. bool Init(const FilePath& history_dir, BookmarkService* bookmark_service); // Did the backend finish loading the databases? bool backend_loaded() const { return backend_loaded_; } // Called on shutdown, this will tell the history backend to complete and // will release pointers to it. No other functions should be called once // cleanup has happened that may dispatch to the history thread (because it // will be NULL). // // In practice, this will be called by the service manager (BrowserProcess) // when it is being destroyed. Because that reference is being destroyed, it // should be impossible for anybody else to call the service, even if it is // still in memory (pending requests may be holding a reference to us). void Cleanup(); // RenderProcessHost pointers are used to scope page IDs (see AddPage). These // objects must tell us when they are being destroyed so that we can clear // out any cached data associated with that scope. // // The given pointer will not be dereferenced, it is only used for // identification purposes, hence it is a void*. void NotifyRenderProcessHostDestruction(const void* host); // Returns the in-memory URL database. The returned pointer MAY BE NULL if // the in-memory database has not been loaded yet. This pointer is owned // by the history system. Callers should not store or cache this value. // // TODO(brettw) this should return the InMemoryHistoryBackend. history::URLDatabase* in_memory_database() const; // Navigation ---------------------------------------------------------------- // Adds the given canonical URL to history with the current time as the visit // time. Referrer may be the empty string. // // The supplied render process host is used to scope the given page ID. Page // IDs are only unique inside a given render process, so we need that to // differentiate them. This pointer should not be dereferenced by the history // system. Since render view host pointers may be reused (if one gets deleted // and a new one created at the same address), WebContents should notify // us when they are being destroyed through NotifyWebContentsDestruction. // // The scope/ids can be NULL if there is no meaningful tracking information // that can be performed on the given URL. The 'page_id' should be the ID of // the current session history entry in the given process. // // 'redirects' is an array of redirect URLs leading to this page, with the // page itself as the last item (so when there is no redirect, it will have // one entry). If there are no redirects, this array may also be empty for // the convenience of callers. // // All "Add Page" functions will update the visited link database. void AddPage(const GURL& url, const void* id_scope, int32 page_id, const GURL& referrer, PageTransition::Type transition, const RedirectList& redirects); // For adding pages to history with a specific time. This is for testing // purposes. Call the previous one to use the current time. void AddPage(const GURL& url, base::Time time, const void* id_scope, int32 page_id, const GURL& referrer, PageTransition::Type transition, const RedirectList& redirects); // For adding pages to history where no tracking information can be done. void AddPage(const GURL& url) { AddPage(url, NULL, 0, GURL::EmptyGURL(), PageTransition::LINK, RedirectList()); } // Sets the title for the given page. The page should be in history. If it // is not, this operation is ignored. This call will not update the full // text index. The last title set when the page is indexed will be the // title in the full text index. void SetPageTitle(const GURL& url, const std::wstring& title); // Indexing ------------------------------------------------------------------ // Notifies history of the body text of the given recently-visited URL. // If the URL was not visited "recently enough," the history system may // discard it. void SetPageContents(const GURL& url, const std::wstring& contents); // Querying ------------------------------------------------------------------ // Callback class that a client can implement to iterate over URLs. The // callbacks WILL BE CALLED ON THE BACKGROUND THREAD! Your implementation // should handle this appropriately. class URLEnumerator { public: virtual ~URLEnumerator() {} // Indicates that a URL is available. There will be exactly one call for // every URL in history. virtual void OnURL(const GURL& url) = 0; // Indicates we are done iterating over URLs. Once called, there will be no // more callbacks made. This call is guaranteed to occur, even if there are // no URLs. If all URLs were iterated, success will be true. virtual void OnComplete(bool success) = 0; }; // Enumerate all URLs in history. The given iterator will be owned by the // caller, so the caller should ensure it exists until OnComplete is called. // You should not generally use this since it will be slow to slurp all URLs // in from the database. It is designed for rebuilding the visited link // database from history. void IterateURLs(URLEnumerator* iterator); // Returns the information about the requested URL. If the URL is found, // success will be true and the information will be in the URLRow parameter. // On success, the visits, if requested, will be sorted by date. If they have // not been requested, the pointer will be valid, but the vector will be // empty. // // If success is false, neither the row nor the vector will be valid. typedef Callback4::Type QueryURLCallback; // Queries the basic information about the URL in the history database. If // the caller is interested in the visits (each time the URL is visited), // set |want_visits| to true. If these are not needed, the function will be // faster by setting this to false. Handle QueryURL(const GURL& url, bool want_visits, CancelableRequestConsumerBase* consumer, QueryURLCallback* callback); // Provides the result of a query. See QueryResults in history_types.h. // The common use will be to use QueryResults.Swap to suck the contents of // the results out of the passed in parameter and take ownership of them. typedef Callback2::Type QueryHistoryCallback; // Queries all history with the given options (see QueryOptions in // history_types.h). If non-empty, the full-text database will be queried with // the given |text_query|. If empty, all results matching the given options // will be returned. // // This isn't totally hooked up yet, this will query the "new" full text // database (see SetPageContents) which won't generally be set yet. Handle QueryHistory(const std::wstring& text_query, const history::QueryOptions& options, CancelableRequestConsumerBase* consumer, QueryHistoryCallback* callback); // Called when the results of QueryRedirectsFrom are available. // The given vector will contain a list of all redirects, not counting // the original page. If A redirects to B, the vector will contain only B, // and A will be in 'source_url'. // // If there is no such URL in the database or the most recent visit has no // redirect, the vector will be empty. If the history system failed for // some reason, success will additionally be false. If the given page // has redirected to multiple destinations, this will pick a random one. typedef Callback4::Type QueryRedirectsCallback; // Schedules a query for the most recent redirect coming out of the given // URL. See the RedirectQuerySource above, which is guaranteed to be called // if the request is not canceled. Handle QueryRedirectsFrom(const GURL& from_url, CancelableRequestConsumerBase* consumer, QueryRedirectsCallback* callback); typedef Callback4::Type // Time of first visit. Only first bool is // true and int is > 0. GetVisitCountToHostCallback; // Requests the number of visits to all urls on the scheme/host/post // identified by url. This is only valid for http and https urls. Handle GetVisitCountToHost(const GURL& url, CancelableRequestConsumerBase* consumer, GetVisitCountToHostCallback* callback); // Thumbnails ---------------------------------------------------------------- // Implemented by consumers to get thumbnail data. Called when a request for // the thumbnail data is complete. Once this callback is made, the request // will be completed and no other calls will be made for that handle. // // This function will be called even on error conditions or if there is no // thumbnail for that page. In these cases, the data pointer will be NULL. typedef Callback2 >::Type ThumbnailDataCallback; // Sets the thumbnail for a given URL. The URL must be in the history // database or the request will be ignored. void SetPageThumbnail(const GURL& url, const SkBitmap& thumbnail, const ThumbnailScore& score); // Requests a page thumbnail. See ThumbnailDataCallback definition above. Handle GetPageThumbnail(const GURL& page_url, CancelableRequestConsumerBase* consumer, ThumbnailDataCallback* callback); // Favicon ------------------------------------------------------------------- // Callback for GetFavIcon. If we have previously inquired about the favicon // for this URL, |know_favicon| will be true, and the rest of the fields will // be valid (otherwise they will be ignored). // // On |know_favicon| == true, |data| will either contain the PNG encoded // favicon data, or it will be NULL to indicate that the site does not have // a favicon (in other words, we know the site doesn't have a favicon, as // opposed to not knowing anything). |expired| will be set to true if we // refreshed the favicon "too long" ago and should be updated if the page // is visited again. typedef Callback5, // data bool, // expired GURL>::Type // url of the favicon FavIconDataCallback; // Requests the favicon. FavIconConsumer is notified // when the bits have been fetched. The consumer is NOT deleted by the // HistoryService, and must be valid until the request is serviced. Handle GetFavIcon(const GURL& icon_url, CancelableRequestConsumerBase* consumer, FavIconDataCallback* callback); // Fetches the favicon at icon_url, sending the results to the given callback. // If the favicon has previously been set via SetFavIcon(), then the favicon // url for page_url and all redirects is set to icon_url. If the favicon has // not been set, the database is not updated. Handle UpdateFavIconMappingAndFetch(const GURL& page_url, const GURL& icon_url, CancelableRequestConsumerBase* consumer, FavIconDataCallback* callback); // Requests a favicon for a web page URL. FavIconConsumer is notified // when the bits have been fetched. The consumer is NOT deleted by the // HistoryService, and must be valid until the request is serviced. // // Note: this version is intended to be used to retrieve the favicon of a // page that has been browsed in the past. |expired| in the callback is // always false. Handle GetFavIconForURL(const GURL& page_url, CancelableRequestConsumerBase* consumer, FavIconDataCallback* callback); // Sets the favicon for a page. void SetFavIcon(const GURL& page_url, const GURL& icon_url, const std::vector& image_data); // Marks the favicon for the page as being out of date. void SetFavIconOutOfDateForPage(const GURL& page_url); // Allows the importer to set many favicons for many pages at once. The pages // must exist, any favicon sets for unknown pages will be discarded. Existing // favicons will not be overwritten. void SetImportedFavicons( const std::vector& favicon_usage); // Database management operations -------------------------------------------- // Delete all the information related to a single url. void DeleteURL(const GURL& url); // Implemented by the caller of 'ExpireHistory(Since|Between)' below, and // is called when the history service has deleted the history. typedef Callback0::Type ExpireHistoryCallback; // Removes all visits in the selected time range (including the start time), // updating the URLs accordingly. This deletes the associated data, including // the full text index. This function also deletes the associated favicons, // if they are no longer referenced. |callback| runs when the expiration is // complete. You may use null Time values to do an unbounded delete in // either direction. void ExpireHistoryBetween(base::Time begin_time, base::Time end_time, CancelableRequestConsumerBase* consumer, ExpireHistoryCallback* callback); // Downloads ----------------------------------------------------------------- // Implemented by the caller of 'CreateDownload' below, and is called when the // history service has created a new entry for a download in the history db. typedef Callback2::Type DownloadCreateCallback; // Begins a history request to create a new persistent entry for a download. // 'info' contains all the download's creation state, and 'callback' runs // when the history service request is complete. Handle CreateDownload(const DownloadCreateInfo& info, CancelableRequestConsumerBase* consumer, DownloadCreateCallback* callback); // Implemented by the caller of 'QueryDownloads' below, and is called when the // history service has retrieved a list of all download state. The call typedef Callback1*>::Type DownloadQueryCallback; // Begins a history request to retrieve the state of all downloads in the // history db. 'callback' runs when the history service request is complete, // at which point 'info' contains an array of DownloadCreateInfo, one per // download. Handle QueryDownloads(CancelableRequestConsumerBase* consumer, DownloadQueryCallback* callback); // Called to update the history service about the current state of a download. // This is a 'fire and forget' query, so just pass the relevant state info to // the database with no need for a callback. void UpdateDownload(int64 received_bytes, int32 state, int64 db_handle); // Called to update the history service about the path of a download. // This is a 'fire and forget' query. void UpdateDownloadPath(const std::wstring& path, int64 db_handle); // Permanently remove a download from the history system. This is a 'fire and // forget' operation. void RemoveDownload(int64 db_handle); // Permanently removes all completed download from the history system within // the specified range. This function does not delete downloads that are in // progress or in the process of being cancelled. This is a 'fire and forget' // operation. You can pass is_null times to get unbounded time in either or // both directions. void RemoveDownloadsBetween(base::Time remove_begin, base::Time remove_end); // Implemented by the caller of 'SearchDownloads' below, and is called when // the history system has retrieved the search results. typedef Callback2*>::Type DownloadSearchCallback; // Search for downloads that match the search text. Handle SearchDownloads(const std::wstring& search_text, CancelableRequestConsumerBase* consumer, DownloadSearchCallback* callback); // Visit Segments ------------------------------------------------------------ typedef Callback2*>::Type SegmentQueryCallback; // Query usage data for all visit segments since the provided time. // // The request is performed asynchronously and can be cancelled by using the // returned handle. // // The vector provided to the callback and its contents is owned by the // history system. It will be deeply deleted after the callback is invoked. // If you want to preserve any PageUsageData instance, simply remove them // from the vector. // // The vector contains a list of PageUsageData. Each PageUsageData ID is set // to the segment ID. The URL and all the other information is set to the page // representing the segment. Handle QuerySegmentUsageSince(CancelableRequestConsumerBase* consumer, const base::Time from_time, SegmentQueryCallback* callback); // Set the presentation index for the segment identified by |segment_id|. void SetSegmentPresentationIndex(int64 segment_id, int index); // Keyword search terms ----------------------------------------------------- // Sets the search terms for the specified url and keyword. url_id gives the // id of the url, keyword_id the id of the keyword and term the search term. void SetKeywordSearchTermsForURL(const GURL& url, TemplateURL::IDType keyword_id, const std::wstring& term); // Deletes all search terms for the specified keyword. void DeleteAllSearchTermsForKeyword(TemplateURL::IDType keyword_id); typedef Callback2*>::Type GetMostRecentKeywordSearchTermsCallback; // Returns up to max_count of the most recent search terms starting with the // specified text. The matching is case insensitive. The results are ordered // in descending order up to |max_count| with the most recent search term // first. Handle GetMostRecentKeywordSearchTerms( TemplateURL::IDType keyword_id, const std::wstring& prefix, int max_count, CancelableRequestConsumerBase* consumer, GetMostRecentKeywordSearchTermsCallback* callback); // Bookmarks ----------------------------------------------------------------- // Notification that a URL is no longer bookmarked. void URLsNoLongerBookmarked(const std::set& urls); // Generic Stuff ------------------------------------------------------------- typedef Callback0::Type HistoryDBTaskCallback; // Schedules a HistoryDBTask for running on the history backend thread. See // HistoryDBTask for details on what this does. Handle ScheduleDBTask(HistoryDBTask* task, CancelableRequestConsumerBase* consumer); // Testing ------------------------------------------------------------------- // Designed for unit tests, this passes the given task on to the history // backend to be called once the history backend has terminated. This allows // callers to know when the history thread is complete and the database files // can be deleted and the next test run. Otherwise, the history thread may // still be running, causing problems in subsequent tests. // // There can be only one closing task, so this will override any previously // set task. We will take ownership of the pointer and delete it when done. // The task will be run on the calling thread (this function is threadsafe). void SetOnBackendDestroyTask(Task* task); // Used for unit testing and potentially importing to get known information // into the database. This assumes the URL doesn't exist in the database // // Calling this function many times may be slow because each call will // dispatch to the history thread and will be a separate database // transaction. If this functionality is needed for importing many URLs, a // version that takes an array should probably be added. void AddPageWithDetails(const GURL& url, const std::wstring& title, int visit_count, int typed_count, base::Time last_visit, bool hidden); // The same as AddPageWithDetails() but takes a vector. void AddPagesWithDetails(const std::vector& info); private: class BackendDelegate; friend class BackendDelegate; friend class history::HistoryBackend; friend class history::HistoryQueryTest; friend class HistoryOperation; friend class HistoryURLProvider; friend class HistoryURLProviderTest; template friend class DownloadRequest; friend class PageUsageRequest; friend class RedirectRequest; friend class FavIconRequest; friend class TestingProfile; // These are not currently used, hopefully we can do something in the future // to ensure that the most important things happen first. enum SchedulePriority { PRIORITY_UI, // The highest priority (must respond to UI events). PRIORITY_NORMAL, // Normal stuff like adding a page. PRIORITY_LOW, // Low priority things like indexing or expiration. }; // Implementation of NotificationObserver. virtual void Observe(NotificationType type, const NotificationSource& source, const NotificationDetails& details); // Called by the HistoryURLProvider class to schedule an autocomplete, it // will be called back on the internal history thread with the history // database so it can query. See history_autocomplete.cc for a diagram. void ScheduleAutocomplete(HistoryURLProvider* provider, HistoryURLProviderParams* params); // Broadcasts the given notification. This is called by the backend so that // the notification will be broadcast on the main thread. // // The |details_deleted| pointer will be sent as the "details" for the // notification. The function takes ownership of the pointer and deletes it // when the notification is sent (it is coming from another thread, so must // be allocated on the heap). void BroadcastNotifications(NotificationType type, history::HistoryDetails* details_deleted); // Notification from the backend that it has finished loading. Sends // notification (NOTIFY_HISTORY_LOADED) and sets backend_loaded_ to true. void OnDBLoaded(); // Returns true if this looks like the type of URL we want to add to the // history. We filter out some URLs such as JavaScript. bool CanAddURL(const GURL& url) const; // Sets the in-memory URL database. This is called by the backend once the // database is loaded to make it available. void SetInMemoryBackend(history::InMemoryHistoryBackend* mem_backend); // Called by our BackendDelegate when the database version is too new to be // read properly. void NotifyTooNew(); // Call to schedule a given task for running on the history thread with the // specified priority. The task will have ownership taken. void ScheduleTask(SchedulePriority priority, Task* task); // Schedule ------------------------------------------------------------------ // // Functions for scheduling operations on the history thread that have a // handle and are cancelable. For fire-and-forget operations, see // ScheduleAndForget below. template Handle Schedule(SchedulePriority priority, BackendFunc func, // Function to call on the HistoryBackend. CancelableRequestConsumerBase* consumer, RequestType* request) { DCHECK(history_backend_) << "History service being called after cleanup"; AddRequest(request, consumer); ScheduleTask(priority, NewRunnableMethod(history_backend_.get(), func, scoped_refptr(request))); return request->handle(); } template Handle Schedule(SchedulePriority priority, BackendFunc func, // Function to call on the HistoryBackend. CancelableRequestConsumerBase* consumer, RequestType* request, const ArgA& a) { DCHECK(history_backend_) << "History service being called after cleanup"; AddRequest(request, consumer); ScheduleTask(priority, NewRunnableMethod(history_backend_.get(), func, scoped_refptr(request), a)); return request->handle(); } template Handle Schedule(SchedulePriority priority, BackendFunc func, // Function to call on the HistoryBackend. CancelableRequestConsumerBase* consumer, RequestType* request, const ArgA& a, const ArgB& b) { DCHECK(history_backend_) << "History service being called after cleanup"; AddRequest(request, consumer); ScheduleTask(priority, NewRunnableMethod(history_backend_.get(), func, scoped_refptr(request), a, b)); return request->handle(); } template Handle Schedule(SchedulePriority priority, BackendFunc func, // Function to call on the HistoryBackend. CancelableRequestConsumerBase* consumer, RequestType* request, const ArgA& a, const ArgB& b, const ArgC& c) { DCHECK(history_backend_) << "History service being called after cleanup"; AddRequest(request, consumer); ScheduleTask(priority, NewRunnableMethod(history_backend_.get(), func, scoped_refptr(request), a, b, c)); return request->handle(); } // ScheduleAndForget --------------------------------------------------------- // // Functions for scheduling operations on the history thread that do not need // any callbacks and are not cancelable. template void ScheduleAndForget(SchedulePriority priority, BackendFunc func) { // Function to call on backend. DCHECK(history_backend_) << "History service being called after cleanup"; ScheduleTask(priority, NewRunnableMethod(history_backend_.get(), func)); } template void ScheduleAndForget(SchedulePriority priority, BackendFunc func, // Function to call on backend. const ArgA& a) { DCHECK(history_backend_) << "History service being called after cleanup"; ScheduleTask(priority, NewRunnableMethod(history_backend_.get(), func, a)); } template void ScheduleAndForget(SchedulePriority priority, BackendFunc func, // Function to call on backend. const ArgA& a, const ArgB& b) { DCHECK(history_backend_) << "History service being called after cleanup"; ScheduleTask(priority, NewRunnableMethod(history_backend_.get(), func, a, b)); } template void ScheduleAndForget(SchedulePriority priority, BackendFunc func, // Function to call on backend. const ArgA& a, const ArgB& b, const ArgC& c) { DCHECK(history_backend_) << "History service being called after cleanup"; ScheduleTask(priority, NewRunnableMethod(history_backend_.get(), func, a, b, c)); } template void ScheduleAndForget(SchedulePriority priority, BackendFunc func, // Function to call on backend. const ArgA& a, const ArgB& b, const ArgC& c, const ArgD& d) { DCHECK(history_backend_) << "History service being called after cleanup"; ScheduleTask(priority, NewRunnableMethod(history_backend_.get(), func, a, b, c, d)); } // Some void primitives require some internal processing in the main thread // when done. We use this internal consumer for this purpose. CancelableRequestConsumer internal_consumer_; // The thread used by the history service to run complicated operations ChromeThread* thread_; // This class has most of the implementation and runs on the 'thread_'. // You MUST communicate with this class ONLY through the thread_'s // message_loop(). // // This pointer will be NULL once Cleanup() has been called, meaning no // more calls should be made to the history thread. scoped_refptr history_backend_; // A cache of the user-typed URLs kept in memory that is used by the // autocomplete system. This will be NULL until the database has been created // on the background thread. scoped_ptr in_memory_backend_; // The profile, may be null when testing. Profile* profile_; // Has the backend finished loading? The backend is loaded once Init has // completed. bool backend_loaded_; DISALLOW_EVIL_CONSTRUCTORS(HistoryService); }; #endif // CHROME_BROWSER_HISTORY_HISTORY_H__