// Copyright (c) 2010 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // On Linux, when the user tries to launch a second copy of chrome, we check // for a socket in the user's profile directory. If the socket file is open we // send a message to the first chrome browser process with the current // directory and second process command line flags. The second process then // exits. // // Because many networked filesystem implementations do not support unix domain // sockets, we create the socket in a temporary directory and create a symlink // in the profile. This temporary directory is no longer bound to the profile, // and may disappear across a reboot or login to a separate session. To bind // them, we store a unique cookie in the profile directory, which must also be // present in the remote directory to connect. The cookie is checked both before // and after the connection. /tmp is sticky, and different Chrome sessions use // different cookies. Thus, a matching cookie before and after means the // connection was to a directory with a valid cookie. // // We also have a lock file, which is a symlink to a non-existent destination. // The destination is a string containing the hostname and process id of // chrome's browser process, eg. "SingletonLock -> example.com-9156". When the // first copy of chrome exits it will delete the lock file on shutdown, so that // a different instance on a different host may then use the profile directory. // // If writing to the socket fails, the hostname in the lock is checked to see if // another instance is running a different host using a shared filesystem (nfs, // etc.) If the hostname differs an error is displayed and the second process // exits. Otherwise the first process (if any) is killed and the second process // starts as normal. // // When the second process sends the current directory and command line flags to // the first process, it waits for an ACK message back from the first process // for a certain time. If there is no ACK message back in time, then the first // process will be considered as hung for some reason. The second process then // retrieves the process id from the symbol link and kills it by sending // SIGKILL. Then the second process starts as normal. // // TODO(james.su@gmail.com): Add unittest for this class. #include "chrome/browser/process_singleton.h" #include #include #include #include #include #include #include #include #include #include #include #include #include "app/l10n_util.h" #include "base/base_paths.h" #include "base/basictypes.h" #include "base/command_line.h" #include "base/eintr_wrapper.h" #include "base/file_path.h" #include "base/logging.h" #include "base/message_loop.h" #include "base/path_service.h" #include "base/platform_thread.h" #include "base/process_util.h" #include "base/rand_util.h" #include "base/safe_strerror_posix.h" #include "base/stl_util-inl.h" #include "base/string_number_conversions.h" #include "base/string_split.h" #include "base/sys_string_conversions.h" #include "base/utf_string_conversions.h" #include "base/time.h" #include "base/timer.h" #include "chrome/browser/browser_init.h" #include "chrome/browser/browser_process.h" #include "chrome/browser/browser_thread.h" #if defined(TOOLKIT_GTK) #include "chrome/browser/gtk/process_singleton_dialog.h" #endif #include "chrome/browser/io_thread.h" #include "chrome/browser/profile.h" #include "chrome/browser/profile_manager.h" #include "chrome/common/chrome_constants.h" #include "chrome/common/chrome_paths.h" #include "chrome/common/chrome_switches.h" #include "grit/chromium_strings.h" #include "grit/generated_resources.h" #include "net/base/net_util.h" const int ProcessSingleton::kTimeoutInSeconds; namespace { const char kStartToken[] = "START"; const char kACKToken[] = "ACK"; const char kShutdownToken[] = "SHUTDOWN"; const char kTokenDelimiter = '\0'; const int kMaxMessageLength = 32 * 1024; const int kMaxACKMessageLength = arraysize(kShutdownToken) - 1; const char kLockDelimiter = '-'; // Set a file descriptor to be non-blocking. // Return 0 on success, -1 on failure. int SetNonBlocking(int fd) { int flags = fcntl(fd, F_GETFL, 0); if (-1 == flags) return flags; if (flags & O_NONBLOCK) return 0; return fcntl(fd, F_SETFL, flags | O_NONBLOCK); } // Set the close-on-exec bit on a file descriptor. // Returns 0 on success, -1 on failure. int SetCloseOnExec(int fd) { int flags = fcntl(fd, F_GETFD, 0); if (-1 == flags) return flags; if (flags & FD_CLOEXEC) return 0; return fcntl(fd, F_SETFD, flags | FD_CLOEXEC); } // Close a socket and check return value. void CloseSocket(int fd) { int rv = HANDLE_EINTR(close(fd)); DCHECK_EQ(0, rv) << "Error closing socket: " << safe_strerror(errno); } // Write a message to a socket fd. bool WriteToSocket(int fd, const char *message, size_t length) { DCHECK(message); DCHECK(length); size_t bytes_written = 0; do { ssize_t rv = HANDLE_EINTR( write(fd, message + bytes_written, length - bytes_written)); if (rv < 0) { if (errno == EAGAIN || errno == EWOULDBLOCK) { // The socket shouldn't block, we're sending so little data. Just give // up here, since NotifyOtherProcess() doesn't have an asynchronous api. LOG(ERROR) << "ProcessSingleton would block on write(), so it gave up."; return false; } PLOG(ERROR) << "write() failed"; return false; } bytes_written += rv; } while (bytes_written < length); return true; } // Wait a socket for read for a certain timeout in seconds. // Returns -1 if error occurred, 0 if timeout reached, > 0 if the socket is // ready for read. int WaitSocketForRead(int fd, int timeout) { fd_set read_fds; struct timeval tv; FD_ZERO(&read_fds); FD_SET(fd, &read_fds); tv.tv_sec = timeout; tv.tv_usec = 0; return HANDLE_EINTR(select(fd + 1, &read_fds, NULL, NULL, &tv)); } // Read a message from a socket fd, with an optional timeout in seconds. // If |timeout| <= 0 then read immediately. // Return number of bytes actually read, or -1 on error. ssize_t ReadFromSocket(int fd, char *buf, size_t bufsize, int timeout) { if (timeout > 0) { int rv = WaitSocketForRead(fd, timeout); if (rv <= 0) return rv; } size_t bytes_read = 0; do { ssize_t rv = HANDLE_EINTR(read(fd, buf + bytes_read, bufsize - bytes_read)); if (rv < 0) { if (errno != EAGAIN && errno != EWOULDBLOCK) { PLOG(ERROR) << "read() failed"; return rv; } else { // It would block, so we just return what has been read. return bytes_read; } } else if (!rv) { // No more data to read. return bytes_read; } else { bytes_read += rv; } } while (bytes_read < bufsize); return bytes_read; } // Set up a sockaddr appropriate for messaging. void SetupSockAddr(const std::string& path, struct sockaddr_un* addr) { addr->sun_family = AF_UNIX; CHECK(path.length() < arraysize(addr->sun_path)) << "Socket path too long: " << path; base::strlcpy(addr->sun_path, path.c_str(), arraysize(addr->sun_path)); } // Set up a socket appropriate for messaging. int SetupSocketOnly() { int sock = socket(PF_UNIX, SOCK_STREAM, 0); PCHECK(sock >= 0) << "socket() failed"; int rv = SetNonBlocking(sock); DCHECK_EQ(0, rv) << "Failed to make non-blocking socket."; rv = SetCloseOnExec(sock); DCHECK_EQ(0, rv) << "Failed to set CLOEXEC on socket."; return sock; } // Set up a socket and sockaddr appropriate for messaging. void SetupSocket(const std::string& path, int* sock, struct sockaddr_un* addr) { *sock = SetupSocketOnly(); SetupSockAddr(path, addr); } // Read a symbolic link, return empty string if given path is not a // symbol link. This version does not interpret the errno, leaving // the caller to do so. bool ReadLinkSilent(const std::string& path, std::string* output) { char buf[PATH_MAX]; ssize_t len = readlink(path.c_str(), buf, PATH_MAX); if (len >= 0) { output->assign(buf, len); return true; } output->clear(); return false; } // Read a symbolic link, return empty string if given path is not a symbol link. std::string ReadLink(const std::string& path) { std::string target; if (!ReadLinkSilent(path, &target)) { // The only errno that should occur is ENOENT. if (errno != 0 && errno != ENOENT) PLOG(ERROR) << "readlink(" << path << ") failed"; } return target; } // Unlink a path. Return true on success. bool UnlinkPath(const std::string& path) { int rv = unlink(path.c_str()); if (rv < 0 && errno != ENOENT) PLOG(ERROR) << "Failed to unlink " << path; return rv == 0; } // Create a symlink. Returns true on success. bool SymlinkPath(const std::string& target, const std::string& path) { if (symlink(target.c_str(), path.c_str()) < 0) { // Double check the value in case symlink suceeded but we got an incorrect // failure due to NFS packet loss & retry. int saved_errno = errno; if (ReadLink(path) != target) { // If we failed to create the lock, most likely another instance won the // startup race. errno = saved_errno; PLOG(ERROR) << "Failed to create " << path; return false; } } return true; } // Extract the hostname and pid from the lock symlink. // Returns true if the lock existed. bool ParseLockPath(const std::string& path, std::string* hostname, int* pid) { std::string real_path = ReadLink(path); if (real_path.empty()) return false; std::string::size_type pos = real_path.rfind(kLockDelimiter); // If the path is not a symbolic link, or doesn't contain what we expect, // bail. if (pos == std::string::npos) { *hostname = ""; *pid = -1; return true; } *hostname = real_path.substr(0, pos); const std::string& pid_str = real_path.substr(pos + 1); if (!base::StringToInt(pid_str, pid)) *pid = -1; return true; } void DisplayProfileInUseError(const std::string& lock_path, const std::string& hostname, int pid) { std::wstring error = l10n_util::GetStringF(IDS_PROFILE_IN_USE_LINUX, UTF8ToWide(base::IntToString(pid)), ASCIIToWide(hostname), base::SysNativeMBToWide(lock_path), l10n_util::GetString(IDS_PRODUCT_NAME)); LOG(ERROR) << base::SysWideToNativeMB(error).c_str(); #if defined(TOOLKIT_GTK) if (!CommandLine::ForCurrentProcess()->HasSwitch( switches::kNoProcessSingletonDialog)) ProcessSingletonDialog::ShowAndRun(WideToUTF8(error)); #endif } bool IsChromeProcess(pid_t pid) { FilePath other_chrome_path(base::GetProcessExecutablePath(pid)); return (!other_chrome_path.empty() && other_chrome_path.BaseName() == FilePath::FromWStringHack(chrome::kBrowserProcessExecutableName)); } // Return true if the given pid is one of our child processes. // Assumes that the current pid is the root of all pids of the current instance. bool IsSameChromeInstance(pid_t pid) { pid_t cur_pid = base::GetCurrentProcId(); while (pid != cur_pid) { pid = base::GetParentProcessId(pid); if (pid < 0) return false; if (!IsChromeProcess(pid)) return false; } return true; } // Extract the process's pid from a symbol link path and if it is on // the same host, kill the process, unlink the lock file and return true. // If the process is part of the same chrome instance, unlink the lock file and // return true without killing it. // If the process is on a different host, return false. bool KillProcessByLockPath(const std::string& path) { std::string hostname; int pid; ParseLockPath(path, &hostname, &pid); if (!hostname.empty() && hostname != net::GetHostName()) { DisplayProfileInUseError(path, hostname, pid); return false; } UnlinkPath(path); if (IsSameChromeInstance(pid)) return true; if (pid > 0) { // TODO(james.su@gmail.com): Is SIGKILL ok? int rv = kill(static_cast(pid), SIGKILL); // ESRCH = No Such Process (can happen if the other process is already in // progress of shutting down and finishes before we try to kill it). DCHECK(rv == 0 || errno == ESRCH) << "Error killing process: " << safe_strerror(errno); return true; } LOG(ERROR) << "Failed to extract pid from path: " << path; return true; } // A helper class to hold onto a socket. class ScopedSocket { public: ScopedSocket() : fd_(-1) { Reset(); } ~ScopedSocket() { Close(); } int fd() { return fd_; } void Reset() { Close(); fd_ = SetupSocketOnly(); } void Close() { if (fd_ >= 0) CloseSocket(fd_); fd_ = -1; } private: int fd_; }; // Returns a random string for uniquifying profile connections. std::string GenerateCookie() { return base::Uint64ToString(base::RandUint64()); } bool CheckCookie(const FilePath& path, const std::string& cookie) { return (cookie == ReadLink(path.value())); } bool ConnectSocket(ScopedSocket* socket, const FilePath& socket_path, const FilePath& cookie_path) { std::string socket_target; if (ReadLinkSilent(socket_path.value(), &socket_target)) { // It's a symlink. Read the cookie. std::string cookie = ReadLink(cookie_path.value()); if (cookie.empty()) return false; FilePath remote_cookie = FilePath(socket_target).DirName(). Append(chrome::kSingletonCookieFilename); // Verify the cookie before connecting. if (!CheckCookie(remote_cookie, cookie)) return false; // Now we know the directory was (at that point) created by the profile // owner. Try to connect. sockaddr_un addr; SetupSockAddr(socket_path.value(), &addr); int ret = HANDLE_EINTR(connect(socket->fd(), reinterpret_cast(&addr), sizeof(addr))); if (ret != 0) return false; // Check the cookie again. We only link in /tmp, which is sticky, so, if the // directory is still correct, it must have been correct in-between when we // connected. POSIX, sadly, lacks a connectat(). if (!CheckCookie(remote_cookie, cookie)) { socket->Reset(); return false; } // Success! return true; } else if (errno == EINVAL) { // It exists, but is not a symlink (or some other error we detect // later). Just connect to it directly; this is an older version of Chrome. sockaddr_un addr; SetupSockAddr(socket_path.value(), &addr); int ret = HANDLE_EINTR(connect(socket->fd(), reinterpret_cast(&addr), sizeof(addr))); return (ret == 0); } else { // File is missing, or other error. if (errno != ENOENT) PLOG(ERROR) << "readlink failed"; return false; } } } // namespace /////////////////////////////////////////////////////////////////////////////// // ProcessSingleton::LinuxWatcher // A helper class for a Linux specific implementation of the process singleton. // This class sets up a listener on the singleton socket and handles parsing // messages that come in on the singleton socket. class ProcessSingleton::LinuxWatcher : public MessageLoopForIO::Watcher, public MessageLoop::DestructionObserver, public base::RefCountedThreadSafe { public: // A helper class to read message from an established socket. class SocketReader : public MessageLoopForIO::Watcher { public: SocketReader(ProcessSingleton::LinuxWatcher* parent, MessageLoop* ui_message_loop, int fd) : parent_(parent), ui_message_loop_(ui_message_loop), fd_(fd), bytes_read_(0) { // Wait for reads. MessageLoopForIO::current()->WatchFileDescriptor( fd, true, MessageLoopForIO::WATCH_READ, &fd_reader_, this); timer_.Start(base::TimeDelta::FromSeconds(kTimeoutInSeconds), this, &SocketReader::OnTimerExpiry); } virtual ~SocketReader() { CloseSocket(fd_); } // MessageLoopForIO::Watcher impl. virtual void OnFileCanReadWithoutBlocking(int fd); virtual void OnFileCanWriteWithoutBlocking(int fd) { // SocketReader only watches for accept (read) events. NOTREACHED(); } // Finish handling the incoming message by optionally sending back an ACK // message and removing this SocketReader. void FinishWithACK(const char *message, size_t length); private: // If we haven't completed in a reasonable amount of time, give up. void OnTimerExpiry() { parent_->RemoveSocketReader(this); // We're deleted beyond this point. } MessageLoopForIO::FileDescriptorWatcher fd_reader_; // The ProcessSingleton::LinuxWatcher that owns us. ProcessSingleton::LinuxWatcher* const parent_; // A reference to the UI message loop. MessageLoop* const ui_message_loop_; // The file descriptor we're reading. const int fd_; // Store the message in this buffer. char buf_[kMaxMessageLength]; // Tracks the number of bytes we've read in case we're getting partial // reads. size_t bytes_read_; base::OneShotTimer timer_; DISALLOW_COPY_AND_ASSIGN(SocketReader); }; // We expect to only be constructed on the UI thread. explicit LinuxWatcher(ProcessSingleton* parent) : ui_message_loop_(MessageLoop::current()), parent_(parent) { } // Start listening for connections on the socket. This method should be // called from the IO thread. void StartListening(int socket); // This method determines if we should use the same process and if we should, // opens a new browser tab. This runs on the UI thread. // |reader| is for sending back ACK message. void HandleMessage(const std::string& current_dir, const std::vector& argv, SocketReader *reader); // MessageLoopForIO::Watcher impl. These run on the IO thread. virtual void OnFileCanReadWithoutBlocking(int fd); virtual void OnFileCanWriteWithoutBlocking(int fd) { // ProcessSingleton only watches for accept (read) events. NOTREACHED(); } // MessageLoop::DestructionObserver virtual void WillDestroyCurrentMessageLoop() { fd_watcher_.StopWatchingFileDescriptor(); } private: friend class base::RefCountedThreadSafe; virtual ~LinuxWatcher() { STLDeleteElements(&readers_); } // Removes and deletes the SocketReader. void RemoveSocketReader(SocketReader* reader); MessageLoopForIO::FileDescriptorWatcher fd_watcher_; // A reference to the UI message loop (i.e., the message loop we were // constructed on). MessageLoop* ui_message_loop_; // The ProcessSingleton that owns us. ProcessSingleton* const parent_; std::set readers_; DISALLOW_COPY_AND_ASSIGN(LinuxWatcher); }; void ProcessSingleton::LinuxWatcher::OnFileCanReadWithoutBlocking(int fd) { // Accepting incoming client. sockaddr_un from; socklen_t from_len = sizeof(from); int connection_socket = HANDLE_EINTR(accept( fd, reinterpret_cast(&from), &from_len)); if (-1 == connection_socket) { PLOG(ERROR) << "accept() failed"; return; } int rv = SetNonBlocking(connection_socket); DCHECK_EQ(0, rv) << "Failed to make non-blocking socket."; SocketReader* reader = new SocketReader(this, ui_message_loop_, connection_socket); readers_.insert(reader); } void ProcessSingleton::LinuxWatcher::StartListening(int socket) { DCHECK(BrowserThread::CurrentlyOn(BrowserThread::IO)); // Watch for client connections on this socket. MessageLoopForIO* ml = MessageLoopForIO::current(); ml->AddDestructionObserver(this); ml->WatchFileDescriptor(socket, true, MessageLoopForIO::WATCH_READ, &fd_watcher_, this); } void ProcessSingleton::LinuxWatcher::HandleMessage( const std::string& current_dir, const std::vector& argv, SocketReader* reader) { DCHECK(ui_message_loop_ == MessageLoop::current()); DCHECK(reader); // If locked, it means we are not ready to process this message because // we are probably in a first run critical phase. if (parent_->locked()) { DLOG(WARNING) << "Browser is locked"; // Send back "ACK" message to prevent the client process from starting up. reader->FinishWithACK(kACKToken, arraysize(kACKToken) - 1); return; } // Ignore the request if the browser process is already in shutdown path. if (!g_browser_process || g_browser_process->IsShuttingDown()) { LOG(WARNING) << "Not handling interprocess notification as browser" " is shutting down"; // Send back "SHUTDOWN" message, so that the client process can start up // without killing this process. reader->FinishWithACK(kShutdownToken, arraysize(kShutdownToken) - 1); return; } CommandLine parsed_command_line(argv); PrefService* prefs = g_browser_process->local_state(); DCHECK(prefs); Profile* profile = ProfileManager::GetDefaultProfile(); if (!profile) { // We should only be able to get here if the profile already exists and // has been created. NOTREACHED(); return; } // Ignore the request if the process was passed the --product-version flag. // Normally we wouldn't get here if that flag had been passed, but it can // happen if it is passed to an older version of chrome. Since newer versions // of chrome do this in the background, we want to avoid spawning extra // windows. if (parsed_command_line.HasSwitch(switches::kProductVersion)) { DLOG(WARNING) << "Remote process was passed product version flag, " << "but ignored it. Doing nothing."; } else { // Run the browser startup sequence again, with the command line of the // signalling process. FilePath current_dir_file_path(current_dir); BrowserInit::ProcessCommandLine(parsed_command_line, current_dir_file_path, false, profile, NULL); } // Send back "ACK" message to prevent the client process from starting up. reader->FinishWithACK(kACKToken, arraysize(kACKToken) - 1); } void ProcessSingleton::LinuxWatcher::RemoveSocketReader(SocketReader* reader) { DCHECK(reader); readers_.erase(reader); delete reader; } /////////////////////////////////////////////////////////////////////////////// // ProcessSingleton::LinuxWatcher::SocketReader // void ProcessSingleton::LinuxWatcher::SocketReader::OnFileCanReadWithoutBlocking( int fd) { DCHECK_EQ(fd, fd_); while (bytes_read_ < sizeof(buf_)) { ssize_t rv = HANDLE_EINTR( read(fd, buf_ + bytes_read_, sizeof(buf_) - bytes_read_)); if (rv < 0) { if (errno != EAGAIN && errno != EWOULDBLOCK) { PLOG(ERROR) << "read() failed"; CloseSocket(fd); return; } else { // It would block, so we just return and continue to watch for the next // opportunity to read. return; } } else if (!rv) { // No more data to read. It's time to process the message. break; } else { bytes_read_ += rv; } } // Validate the message. The shortest message is kStartToken\0x\0x const size_t kMinMessageLength = arraysize(kStartToken) + 4; if (bytes_read_ < kMinMessageLength) { buf_[bytes_read_] = 0; LOG(ERROR) << "Invalid socket message (wrong length):" << buf_; return; } std::string str(buf_, bytes_read_); std::vector tokens; base::SplitString(str, kTokenDelimiter, &tokens); if (tokens.size() < 3 || tokens[0] != kStartToken) { LOG(ERROR) << "Wrong message format: " << str; return; } // Stop the expiration timer to prevent this SocketReader object from being // terminated unexpectly. timer_.Stop(); std::string current_dir = tokens[1]; // Remove the first two tokens. The remaining tokens should be the command // line argv array. tokens.erase(tokens.begin()); tokens.erase(tokens.begin()); // Return to the UI thread to handle opening a new browser tab. ui_message_loop_->PostTask(FROM_HERE, NewRunnableMethod( parent_, &ProcessSingleton::LinuxWatcher::HandleMessage, current_dir, tokens, this)); fd_reader_.StopWatchingFileDescriptor(); // LinuxWatcher::HandleMessage() is in charge of destroying this SocketReader // object by invoking SocketReader::FinishWithACK(). } void ProcessSingleton::LinuxWatcher::SocketReader::FinishWithACK( const char *message, size_t length) { if (message && length) { // Not necessary to care about the return value. WriteToSocket(fd_, message, length); } if (shutdown(fd_, SHUT_WR) < 0) PLOG(ERROR) << "shutdown() failed"; parent_->RemoveSocketReader(this); // We are deleted beyond this point. } /////////////////////////////////////////////////////////////////////////////// // ProcessSingleton // ProcessSingleton::ProcessSingleton(const FilePath& user_data_dir) : locked_(false), foreground_window_(NULL), ALLOW_THIS_IN_INITIALIZER_LIST(watcher_(new LinuxWatcher(this))) { socket_path_ = user_data_dir.Append(chrome::kSingletonSocketFilename); lock_path_ = user_data_dir.Append(chrome::kSingletonLockFilename); cookie_path_ = user_data_dir.Append(chrome::kSingletonCookieFilename); } ProcessSingleton::~ProcessSingleton() { } ProcessSingleton::NotifyResult ProcessSingleton::NotifyOtherProcess() { return NotifyOtherProcessWithTimeout(*CommandLine::ForCurrentProcess(), kTimeoutInSeconds, true); } ProcessSingleton::NotifyResult ProcessSingleton::NotifyOtherProcessWithTimeout( const CommandLine& cmd_line, int timeout_seconds, bool kill_unresponsive) { DCHECK_GE(timeout_seconds, 0); ScopedSocket socket; for (int retries = 0; retries <= timeout_seconds; ++retries) { // Try to connect to the socket. if (ConnectSocket(&socket, socket_path_, cookie_path_)) break; // If we're in a race with another process, they may be in Create() and have // created the lock but not attached to the socket. So we check if the // process with the pid from the lockfile is currently running and is a // chrome browser. If so, we loop and try again for |timeout_seconds|. std::string hostname; int pid; if (!ParseLockPath(lock_path_.value(), &hostname, &pid)) { // No lockfile exists. return PROCESS_NONE; } if (hostname.empty()) { // Invalid lockfile. UnlinkPath(lock_path_.value()); return PROCESS_NONE; } if (hostname != net::GetHostName()) { // Locked by process on another host. DisplayProfileInUseError(lock_path_.value(), hostname, pid); return PROFILE_IN_USE; } if (!IsChromeProcess(pid)) { // Orphaned lockfile (no process with pid, or non-chrome process.) UnlinkPath(lock_path_.value()); return PROCESS_NONE; } if (IsSameChromeInstance(pid)) { // Orphaned lockfile (pid is part of same chrome instance we are, even // though we haven't tried to create a lockfile yet). UnlinkPath(lock_path_.value()); return PROCESS_NONE; } if (retries == timeout_seconds) { // Retries failed. Kill the unresponsive chrome process and continue. if (!kill_unresponsive || !KillProcessByLockPath(lock_path_.value())) return PROFILE_IN_USE; return PROCESS_NONE; } PlatformThread::Sleep(1000 /* ms */); } timeval timeout = {timeout_seconds, 0}; setsockopt(socket.fd(), SOL_SOCKET, SO_SNDTIMEO, &timeout, sizeof(timeout)); // Found another process, prepare our command line // format is "START\0\0\0...\0". std::string to_send(kStartToken); to_send.push_back(kTokenDelimiter); FilePath current_dir; if (!PathService::Get(base::DIR_CURRENT, ¤t_dir)) return PROCESS_NONE; to_send.append(current_dir.value()); const std::vector& argv = cmd_line.argv(); for (std::vector::const_iterator it = argv.begin(); it != argv.end(); ++it) { to_send.push_back(kTokenDelimiter); to_send.append(*it); } // Send the message if (!WriteToSocket(socket.fd(), to_send.data(), to_send.length())) { // Try to kill the other process, because it might have been dead. if (!kill_unresponsive || !KillProcessByLockPath(lock_path_.value())) return PROFILE_IN_USE; return PROCESS_NONE; } if (shutdown(socket.fd(), SHUT_WR) < 0) PLOG(ERROR) << "shutdown() failed"; // Read ACK message from the other process. It might be blocked for a certain // timeout, to make sure the other process has enough time to return ACK. char buf[kMaxACKMessageLength + 1]; ssize_t len = ReadFromSocket(socket.fd(), buf, kMaxACKMessageLength, timeout_seconds); // Failed to read ACK, the other process might have been frozen. if (len <= 0) { if (!kill_unresponsive || !KillProcessByLockPath(lock_path_.value())) return PROFILE_IN_USE; return PROCESS_NONE; } buf[len] = '\0'; if (strncmp(buf, kShutdownToken, arraysize(kShutdownToken) - 1) == 0) { // The other process is shutting down, it's safe to start a new process. return PROCESS_NONE; } else if (strncmp(buf, kACKToken, arraysize(kACKToken) - 1) == 0) { // Notify the window manager that we've started up; if we do not open a // window, GTK will not automatically call this for us. gdk_notify_startup_complete(); // Assume the other process is handling the request. return PROCESS_NOTIFIED; } NOTREACHED() << "The other process returned unknown message: " << buf; return PROCESS_NOTIFIED; } ProcessSingleton::NotifyResult ProcessSingleton::NotifyOtherProcessOrCreate() { return NotifyOtherProcessWithTimeoutOrCreate( *CommandLine::ForCurrentProcess(), kTimeoutInSeconds); } ProcessSingleton::NotifyResult ProcessSingleton::NotifyOtherProcessWithTimeoutOrCreate( const CommandLine& command_line, int timeout_seconds) { NotifyResult result = NotifyOtherProcessWithTimeout(command_line, timeout_seconds, true); if (result != PROCESS_NONE) return result; if (Create()) return PROCESS_NONE; // If the Create() failed, try again to notify. (It could be that another // instance was starting at the same time and managed to grab the lock before // we did.) // This time, we don't want to kill anything if we aren't successful, since we // aren't going to try to take over the lock ourselves. result = NotifyOtherProcessWithTimeout(command_line, timeout_seconds, false); if (result != PROCESS_NONE) return result; return LOCK_ERROR; } bool ProcessSingleton::Create() { int sock; sockaddr_un addr; // The symlink lock is pointed to the hostname and process id, so other // processes can find it out. std::string symlink_content = StringPrintf( "%s%c%u", net::GetHostName().c_str(), kLockDelimiter, base::GetCurrentProcId()); // Create symbol link before binding the socket, to ensure only one instance // can have the socket open. if (!SymlinkPath(symlink_content, lock_path_.value())) { // If we failed to create the lock, most likely another instance won the // startup race. return false; } // Create the socket file somewhere in /tmp which is usually mounted as a // normal filesystem. Some network filesystems (notably AFS) are screwy and // do not support Unix domain sockets. if (!socket_dir_.CreateUniqueTempDir()) { LOG(ERROR) << "Failed to create socket directory."; return false; } // Setup the socket symlink and the two cookies. FilePath socket_target_path = socket_dir_.path().Append(chrome::kSingletonSocketFilename); std::string cookie = GenerateCookie(); FilePath remote_cookie_path = socket_dir_.path().Append(chrome::kSingletonCookieFilename); UnlinkPath(socket_path_.value()); UnlinkPath(cookie_path_.value()); if (!SymlinkPath(socket_target_path.value(), socket_path_.value()) || !SymlinkPath(cookie, cookie_path_.value()) || !SymlinkPath(cookie, remote_cookie_path.value())) { // We've already locked things, so we can't have lost the startup race, // but something doesn't like us. LOG(ERROR) << "Failed to create symlinks."; socket_dir_.Delete(); return false; } SetupSocket(socket_target_path.value(), &sock, &addr); if (bind(sock, reinterpret_cast(&addr), sizeof(addr)) < 0) { PLOG(ERROR) << "Failed to bind() " << socket_target_path.value(); CloseSocket(sock); return false; } if (listen(sock, 5) < 0) NOTREACHED() << "listen failed: " << safe_strerror(errno); // Normally we would use BrowserThread, but the IO thread hasn't started yet. // Using g_browser_process, we start the thread so we can listen on the // socket. MessageLoop* ml = g_browser_process->io_thread()->message_loop(); DCHECK(ml); ml->PostTask(FROM_HERE, NewRunnableMethod( watcher_.get(), &ProcessSingleton::LinuxWatcher::StartListening, sock)); return true; } void ProcessSingleton::Cleanup() { UnlinkPath(socket_path_.value()); UnlinkPath(cookie_path_.value()); UnlinkPath(lock_path_.value()); }