// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "chrome/browser/safe_browsing/prefix_set.h" #include #include #include #include #include "base/files/file_util.h" #include "base/files/scoped_file.h" #include "base/files/scoped_temp_dir.h" #include "base/logging.h" #include "base/md5.h" #include "base/memory/scoped_ptr.h" #include "base/path_service.h" #include "base/rand_util.h" #include "base/strings/string_number_conversions.h" #include "base/strings/string_util.h" #include "chrome/common/chrome_paths.h" #include "testing/gtest/include/gtest/gtest.h" #include "testing/platform_test.h" namespace { const SBPrefix kHighBitClear = 1000u * 1000u * 1000u; const SBPrefix kHighBitSet = 3u * 1000u * 1000u * 1000u; } // namespace namespace safe_browsing { class PrefixSetTest : public PlatformTest { protected: // Constants for the v1 format. static const size_t kMagicOffset = 0 * sizeof(uint32); static const size_t kVersionOffset = 1 * sizeof(uint32); static const size_t kIndexSizeOffset = 2 * sizeof(uint32); static const size_t kDeltasSizeOffset = 3 * sizeof(uint32); static const size_t kFullHashesSizeOffset = 4 * sizeof(uint32); static const size_t kPayloadOffset = 5 * sizeof(uint32); // Generate a set of random prefixes to share between tests. For // most tests this generation was a large fraction of the test time. // // The set should contain sparse areas where adjacent items are more // than 2^16 apart, and dense areas where adjacent items are less // than 2^16 apart. static void SetUpTestCase() { // Distribute clusters of prefixes. for (size_t i = 0; i < 250; ++i) { // Unsigned for overflow characteristics. const uint32 base = static_cast(base::RandUint64()); for (size_t j = 0; j < 10; ++j) { const uint32 delta = static_cast(base::RandUint64() & 0xFFFF); const SBPrefix prefix = static_cast(base + delta); shared_prefixes_.push_back(prefix); } } // Lay down a sparsely-distributed layer. const size_t count = shared_prefixes_.size(); for (size_t i = 0; i < count; ++i) { const SBPrefix prefix = static_cast(base::RandUint64()); shared_prefixes_.push_back(prefix); } // Sort for use with PrefixSet constructor. std::sort(shared_prefixes_.begin(), shared_prefixes_.end()); } // Check that all elements of |prefixes| are in |prefix_set|, and // that nearby elements are not (for lack of a more sensible set of // items to check for absence). static void CheckPrefixes(const PrefixSet& prefix_set, const std::vector &prefixes) { // The set can generate the prefixes it believes it has, so that's // a good starting point. std::set check(prefixes.begin(), prefixes.end()); std::vector prefixes_copy; prefix_set.GetPrefixes(&prefixes_copy); EXPECT_EQ(prefixes_copy.size(), check.size()); EXPECT_TRUE(std::equal(check.begin(), check.end(), prefixes_copy.begin())); for (size_t i = 0; i < prefixes.size(); ++i) { EXPECT_TRUE(prefix_set.PrefixExists(prefixes[i])); const SBPrefix left_sibling = prefixes[i] - 1; if (check.count(left_sibling) == 0) EXPECT_FALSE(prefix_set.PrefixExists(left_sibling)); const SBPrefix right_sibling = prefixes[i] + 1; if (check.count(right_sibling) == 0) EXPECT_FALSE(prefix_set.PrefixExists(right_sibling)); } } // Generate a |PrefixSet| file from |shared_prefixes_|, store it in // a temporary file, and return the filename in |filenamep|. // Returns |true| on success. bool GetPrefixSetFile(base::FilePath* filenamep) { if (!temp_dir_.IsValid() && !temp_dir_.CreateUniqueTempDir()) return false; base::FilePath filename = temp_dir_.path().AppendASCII("PrefixSetTest"); PrefixSetBuilder builder(shared_prefixes_); if (!builder.GetPrefixSetNoHashes()->WriteFile(filename)) return false; *filenamep = filename; return true; } // Helper function to read the uint32 value at |offset|, increment it // by |inc|, and write it back in place. |fp| should be opened in // r+ mode. static void IncrementIntAt(FILE* fp, long offset, int inc) { uint32 value = 0; ASSERT_NE(-1, fseek(fp, offset, SEEK_SET)); ASSERT_EQ(1U, fread(&value, sizeof(value), 1, fp)); value += inc; ASSERT_NE(-1, fseek(fp, offset, SEEK_SET)); ASSERT_EQ(1U, fwrite(&value, sizeof(value), 1, fp)); } // Helper function to re-generated |fp|'s checksum to be correct for // the file's contents. |fp| should be opened in r+ mode. static void CleanChecksum(FILE* fp) { base::MD5Context context; base::MD5Init(&context); ASSERT_NE(-1, fseek(fp, 0, SEEK_END)); long file_size = ftell(fp); using base::MD5Digest; size_t payload_size = static_cast(file_size) - sizeof(MD5Digest); size_t digested_size = 0; ASSERT_NE(-1, fseek(fp, 0, SEEK_SET)); while (digested_size < payload_size) { char buf[1024]; size_t nitems = std::min(payload_size - digested_size, sizeof(buf)); ASSERT_EQ(nitems, fread(buf, 1, nitems, fp)); base::MD5Update(&context, base::StringPiece(buf, nitems)); digested_size += nitems; } ASSERT_EQ(digested_size, payload_size); ASSERT_EQ(static_cast(digested_size), ftell(fp)); base::MD5Digest new_digest; base::MD5Final(&new_digest, &context); ASSERT_NE(-1, fseek(fp, digested_size, SEEK_SET)); ASSERT_EQ(1U, fwrite(&new_digest, sizeof(new_digest), 1, fp)); ASSERT_EQ(file_size, ftell(fp)); } // Open |filename| and increment the uint32 at |offset| by |inc|. // Then re-generate the checksum to account for the new contents. void ModifyAndCleanChecksum(const base::FilePath& filename, long offset, int inc) { int64 size_64; ASSERT_TRUE(base::GetFileSize(filename, &size_64)); base::ScopedFILE file(base::OpenFile(filename, "r+b")); IncrementIntAt(file.get(), offset, inc); CleanChecksum(file.get()); file.reset(); int64 new_size_64; ASSERT_TRUE(base::GetFileSize(filename, &new_size_64)); ASSERT_EQ(new_size_64, size_64); } // Fill |prefixes| with values read from a reference file. The reference file // was generated from a specific |shared_prefixes_|. bool ReadReferencePrefixes(std::vector* prefixes) { const char kRefname[] = "PrefixSetRef"; base::FilePath ref_path; if (!PathService::Get(chrome::DIR_TEST_DATA, &ref_path)) return false; ref_path = ref_path.AppendASCII("SafeBrowsing"); ref_path = ref_path.AppendASCII(kRefname); base::ScopedFILE file(base::OpenFile(ref_path, "r")); if (!file.get()) return false; char buf[1024]; while (fgets(buf, sizeof(buf), file.get())) { std::string trimmed; if (base::TRIM_TRAILING != base::TrimWhitespace(buf, base::TRIM_ALL, &trimmed)) return false; unsigned prefix; if (!base::StringToUint(trimmed, &prefix)) return false; prefixes->push_back(prefix); } return true; } // Tests should not modify this shared resource. static std::vector shared_prefixes_; base::ScopedTempDir temp_dir_; }; std::vector PrefixSetTest::shared_prefixes_; // Test that a small sparse random input works. TEST_F(PrefixSetTest, Baseline) { PrefixSetBuilder builder(shared_prefixes_); CheckPrefixes(*builder.GetPrefixSetNoHashes(), shared_prefixes_); } // Test that the empty set doesn't appear to have anything in it. TEST_F(PrefixSetTest, Empty) { const std::vector empty; PrefixSetBuilder builder(empty); scoped_ptr prefix_set = builder.GetPrefixSetNoHashes(); for (size_t i = 0; i < shared_prefixes_.size(); ++i) { EXPECT_FALSE(prefix_set->PrefixExists(shared_prefixes_[i])); } } // Single-element set should work fine. TEST_F(PrefixSetTest, OneElement) { const std::vector prefixes(100, 0u); PrefixSetBuilder builder(prefixes); scoped_ptr prefix_set = builder.GetPrefixSetNoHashes(); EXPECT_FALSE(prefix_set->PrefixExists(static_cast(-1))); EXPECT_TRUE(prefix_set->PrefixExists(prefixes[0])); EXPECT_FALSE(prefix_set->PrefixExists(1u)); // Check that |GetPrefixes()| returns the same set of prefixes as // was passed in. std::vector prefixes_copy; prefix_set->GetPrefixes(&prefixes_copy); EXPECT_EQ(1U, prefixes_copy.size()); EXPECT_EQ(prefixes[0], prefixes_copy[0]); } // Edges of the 32-bit integer range. TEST_F(PrefixSetTest, IntMinMax) { std::vector prefixes; // Using bit patterns rather than portable constants because this // really is testing how the entire 32-bit integer range is handled. prefixes.push_back(0x00000000); prefixes.push_back(0x0000FFFF); prefixes.push_back(0x7FFF0000); prefixes.push_back(0x7FFFFFFF); prefixes.push_back(0x80000000); prefixes.push_back(0x8000FFFF); prefixes.push_back(0xFFFF0000); prefixes.push_back(0xFFFFFFFF); std::sort(prefixes.begin(), prefixes.end()); PrefixSetBuilder builder(prefixes); scoped_ptr prefix_set = builder.GetPrefixSetNoHashes(); // Check that |GetPrefixes()| returns the same set of prefixes as // was passed in. std::vector prefixes_copy; prefix_set->GetPrefixes(&prefixes_copy); ASSERT_EQ(prefixes_copy.size(), prefixes.size()); EXPECT_TRUE(std::equal(prefixes.begin(), prefixes.end(), prefixes_copy.begin())); } // A range with only large deltas. TEST_F(PrefixSetTest, AllBig) { std::vector prefixes; const unsigned kDelta = 10 * 1000 * 1000; for (SBPrefix prefix = kHighBitClear; prefix < kHighBitSet; prefix += kDelta) { prefixes.push_back(prefix); } std::sort(prefixes.begin(), prefixes.end()); PrefixSetBuilder builder(prefixes); scoped_ptr prefix_set = builder.GetPrefixSetNoHashes(); // Check that |GetPrefixes()| returns the same set of prefixes as // was passed in. std::vector prefixes_copy; prefix_set->GetPrefixes(&prefixes_copy); prefixes.erase(std::unique(prefixes.begin(), prefixes.end()), prefixes.end()); EXPECT_EQ(prefixes_copy.size(), prefixes.size()); EXPECT_TRUE(std::equal(prefixes.begin(), prefixes.end(), prefixes_copy.begin())); } // Use artificial inputs to test various edge cases in PrefixExists(). Items // before the lowest item aren't present. Items after the largest item aren't // present. Create a sequence of items with deltas above and below 2^16, and // make sure they're all present. Create a very long sequence with deltas below // 2^16 to test crossing |kMaxRun|. TEST_F(PrefixSetTest, EdgeCases) { std::vector prefixes; // Put in a high-bit prefix. SBPrefix prefix = kHighBitSet; prefixes.push_back(prefix); // Add a sequence with very large deltas. unsigned delta = 100 * 1000 * 1000; for (int i = 0; i < 10; ++i) { prefix += delta; prefixes.push_back(prefix); } // Add a sequence with deltas that start out smaller than the // maximum delta, and end up larger. Also include some duplicates. delta = 256 * 256 - 100; for (int i = 0; i < 200; ++i) { prefix += delta; prefixes.push_back(prefix); prefixes.push_back(prefix); delta++; } // Add a long sequence with deltas smaller than the maximum delta, // so a new index item will be injected. delta = 256 * 256 - 1; prefix = kHighBitClear - delta * 1000; prefixes.push_back(prefix); for (int i = 0; i < 1000; ++i) { prefix += delta; prefixes.push_back(prefix); delta--; } std::sort(prefixes.begin(), prefixes.end()); PrefixSetBuilder builder(prefixes); scoped_ptr prefix_set = builder.GetPrefixSetNoHashes(); // Check that |GetPrefixes()| returns the same set of prefixes as // was passed in. std::vector prefixes_copy; prefix_set->GetPrefixes(&prefixes_copy); prefixes.erase(std::unique(prefixes.begin(), prefixes.end()), prefixes.end()); EXPECT_EQ(prefixes_copy.size(), prefixes.size()); EXPECT_TRUE(std::equal(prefixes.begin(), prefixes.end(), prefixes_copy.begin())); // Items before and after the set are not present, and don't crash. EXPECT_FALSE(prefix_set->PrefixExists(kHighBitSet - 100)); EXPECT_FALSE(prefix_set->PrefixExists(kHighBitClear + 100)); // Check that the set correctly flags all of the inputs, and also // check items just above and below the inputs to make sure they // aren't present. for (size_t i = 0; i < prefixes.size(); ++i) { EXPECT_TRUE(prefix_set->PrefixExists(prefixes[i])); EXPECT_FALSE(prefix_set->PrefixExists(prefixes[i] - 1)); EXPECT_FALSE(prefix_set->PrefixExists(prefixes[i] + 1)); } } // Test writing a prefix set to disk and reading it back in. TEST_F(PrefixSetTest, ReadWrite) { base::FilePath filename; // Write the sample prefix set out, read it back in, and check all // the prefixes. Leaves the path in |filename|. { ASSERT_TRUE(GetPrefixSetFile(&filename)); scoped_ptr prefix_set = PrefixSet::LoadFile(filename); ASSERT_TRUE(prefix_set.get()); CheckPrefixes(*prefix_set, shared_prefixes_); } // Test writing and reading a very sparse set containing no deltas. { std::vector prefixes; prefixes.push_back(kHighBitClear); prefixes.push_back(kHighBitSet); PrefixSetBuilder builder(prefixes); ASSERT_TRUE(builder.GetPrefixSetNoHashes()->WriteFile(filename)); scoped_ptr prefix_set = PrefixSet::LoadFile(filename); ASSERT_TRUE(prefix_set.get()); CheckPrefixes(*prefix_set, prefixes); } // Test writing and reading an empty set. { std::vector prefixes; PrefixSetBuilder builder(prefixes); ASSERT_TRUE(builder.GetPrefixSetNoHashes()->WriteFile(filename)); scoped_ptr prefix_set = PrefixSet::LoadFile(filename); ASSERT_TRUE(prefix_set.get()); CheckPrefixes(*prefix_set, prefixes); } // Test that full hashes are persisted. { std::vector hashes; hashes.push_back(SBFullHashForString("one")); hashes.push_back(SBFullHashForString("two")); hashes.push_back(SBFullHashForString("three")); std::vector prefixes(shared_prefixes_); // Remove any collisions from the prefixes. for (size_t i = 0; i < hashes.size(); ++i) { std::vector::iterator iter = std::lower_bound(prefixes.begin(), prefixes.end(), hashes[i].prefix); if (iter != prefixes.end() && *iter == hashes[i].prefix) prefixes.erase(iter); } PrefixSetBuilder builder(prefixes); ASSERT_TRUE(builder.GetPrefixSet(hashes)->WriteFile(filename)); scoped_ptr prefix_set = PrefixSet::LoadFile(filename); ASSERT_TRUE(prefix_set.get()); CheckPrefixes(*prefix_set, prefixes); EXPECT_TRUE(prefix_set->Exists(hashes[0])); EXPECT_TRUE(prefix_set->Exists(hashes[1])); EXPECT_TRUE(prefix_set->Exists(hashes[2])); EXPECT_FALSE(prefix_set->PrefixExists(hashes[0].prefix)); EXPECT_FALSE(prefix_set->PrefixExists(hashes[1].prefix)); EXPECT_FALSE(prefix_set->PrefixExists(hashes[2].prefix)); } } // Check that |CleanChecksum()| makes an acceptable checksum. TEST_F(PrefixSetTest, CorruptionHelpers) { base::FilePath filename; ASSERT_TRUE(GetPrefixSetFile(&filename)); // This will modify data in |index_|, which will fail the digest check. base::ScopedFILE file(base::OpenFile(filename, "r+b")); IncrementIntAt(file.get(), kPayloadOffset, 1); file.reset(); scoped_ptr prefix_set = PrefixSet::LoadFile(filename); ASSERT_FALSE(prefix_set.get()); // Fix up the checksum and it will read successfully (though the // data will be wrong). file.reset(base::OpenFile(filename, "r+b")); CleanChecksum(file.get()); file.reset(); prefix_set = PrefixSet::LoadFile(filename); ASSERT_TRUE(prefix_set.get()); } // Bad magic is caught by the sanity check. TEST_F(PrefixSetTest, CorruptionMagic) { base::FilePath filename; ASSERT_TRUE(GetPrefixSetFile(&filename)); ASSERT_NO_FATAL_FAILURE( ModifyAndCleanChecksum(filename, kMagicOffset, 1)); scoped_ptr prefix_set = PrefixSet::LoadFile(filename); ASSERT_FALSE(prefix_set.get()); } // Bad version is caught by the sanity check. TEST_F(PrefixSetTest, CorruptionVersion) { base::FilePath filename; ASSERT_TRUE(GetPrefixSetFile(&filename)); ASSERT_NO_FATAL_FAILURE( ModifyAndCleanChecksum(filename, kVersionOffset, 10)); scoped_ptr prefix_set = PrefixSet::LoadFile(filename); ASSERT_FALSE(prefix_set.get()); } // Bad |index_| size is caught by the sanity check. TEST_F(PrefixSetTest, CorruptionIndexSize) { base::FilePath filename; ASSERT_TRUE(GetPrefixSetFile(&filename)); ASSERT_NO_FATAL_FAILURE( ModifyAndCleanChecksum(filename, kIndexSizeOffset, 1)); scoped_ptr prefix_set = PrefixSet::LoadFile(filename); ASSERT_FALSE(prefix_set.get()); } // Bad |deltas_| size is caught by the sanity check. TEST_F(PrefixSetTest, CorruptionDeltasSize) { base::FilePath filename; ASSERT_TRUE(GetPrefixSetFile(&filename)); ASSERT_NO_FATAL_FAILURE( ModifyAndCleanChecksum(filename, kDeltasSizeOffset, 1)); scoped_ptr prefix_set = PrefixSet::LoadFile(filename); ASSERT_FALSE(prefix_set.get()); } // Bad |full_hashes_| size is caught by the sanity check. TEST_F(PrefixSetTest, CorruptionFullHashesSize) { base::FilePath filename; ASSERT_TRUE(GetPrefixSetFile(&filename)); ASSERT_NO_FATAL_FAILURE( ModifyAndCleanChecksum(filename, kFullHashesSizeOffset, 1)); scoped_ptr prefix_set = PrefixSet::LoadFile(filename); ASSERT_FALSE(prefix_set.get()); } // Test that the digest catches corruption in the middle of the file // (in the payload between the header and the digest). TEST_F(PrefixSetTest, CorruptionPayload) { base::FilePath filename; ASSERT_TRUE(GetPrefixSetFile(&filename)); base::ScopedFILE file(base::OpenFile(filename, "r+b")); ASSERT_NO_FATAL_FAILURE(IncrementIntAt(file.get(), 666, 1)); file.reset(); scoped_ptr prefix_set = PrefixSet::LoadFile(filename); ASSERT_FALSE(prefix_set.get()); } // Test corruption in the digest itself. TEST_F(PrefixSetTest, CorruptionDigest) { base::FilePath filename; ASSERT_TRUE(GetPrefixSetFile(&filename)); int64 size_64; ASSERT_TRUE(base::GetFileSize(filename, &size_64)); base::ScopedFILE file(base::OpenFile(filename, "r+b")); long digest_offset = static_cast(size_64 - sizeof(base::MD5Digest)); ASSERT_NO_FATAL_FAILURE(IncrementIntAt(file.get(), digest_offset, 1)); file.reset(); scoped_ptr prefix_set = PrefixSet::LoadFile(filename); ASSERT_FALSE(prefix_set.get()); } // Test excess data after the digest (fails the size test). TEST_F(PrefixSetTest, CorruptionExcess) { base::FilePath filename; ASSERT_TRUE(GetPrefixSetFile(&filename)); // Add some junk to the trunk. base::ScopedFILE file(base::OpenFile(filename, "ab")); const char buf[] = "im in ur base, killing ur d00dz."; ASSERT_EQ(strlen(buf), fwrite(buf, 1, strlen(buf), file.get())); file.reset(); scoped_ptr prefix_set = PrefixSet::LoadFile(filename); ASSERT_FALSE(prefix_set.get()); } // Test that files which had 64-bit size_t are discarded. TEST_F(PrefixSetTest, SizeTRecovery) { base::FilePath filename; ASSERT_TRUE(GetPrefixSetFile(&filename)); // Open the file for rewrite. base::ScopedFILE file(base::OpenFile(filename, "r+b")); // Leave existing magic and version. ASSERT_NE(-1, fseek(file.get(), sizeof(uint32) * 2, SEEK_SET)); // Indicate two index values and two deltas. uint32 val = 2; ASSERT_EQ(sizeof(val), fwrite(&val, 1, sizeof(val), file.get())); ASSERT_EQ(sizeof(val), fwrite(&val, 1, sizeof(val), file.get())); // Write two index values with 64-bit "size_t". std::pair item; memset(&item, 0, sizeof(item)); // Includes any padding. item.first = 17; item.second = 0; ASSERT_EQ(sizeof(item), fwrite(&item, 1, sizeof(item), file.get())); item.first = 100042; item.second = 1; ASSERT_EQ(sizeof(item), fwrite(&item, 1, sizeof(item), file.get())); // Write two delta values. uint16 delta = 23; ASSERT_EQ(sizeof(delta), fwrite(&delta, 1, sizeof(delta), file.get())); ASSERT_EQ(sizeof(delta), fwrite(&delta, 1, sizeof(delta), file.get())); // Leave space for the digest at the end, and regenerate it. base::MD5Digest dummy = { { 0 } }; ASSERT_EQ(sizeof(dummy), fwrite(&dummy, 1, sizeof(dummy), file.get())); ASSERT_TRUE(base::TruncateFile(file.get())); CleanChecksum(file.get()); file.reset(); // Flush updates. scoped_ptr prefix_set = PrefixSet::LoadFile(filename); ASSERT_FALSE(prefix_set.get()); } // Test Exists() against full hashes passed to builder. TEST_F(PrefixSetTest, FullHashBuild) { const SBFullHash kHash1 = SBFullHashForString("one"); const SBFullHash kHash2 = SBFullHashForString("two"); const SBFullHash kHash3 = SBFullHashForString("three"); const SBFullHash kHash4 = SBFullHashForString("four"); const SBFullHash kHash5 = SBFullHashForString("five"); const SBFullHash kHash6 = SBFullHashForString("six"); std::vector prefixes; prefixes.push_back(kHash1.prefix); prefixes.push_back(kHash2.prefix); std::sort(prefixes.begin(), prefixes.end()); std::vector hashes; hashes.push_back(kHash4); hashes.push_back(kHash5); PrefixSetBuilder builder(prefixes); scoped_ptr prefix_set = builder.GetPrefixSet(hashes); EXPECT_TRUE(prefix_set->Exists(kHash1)); EXPECT_TRUE(prefix_set->Exists(kHash2)); EXPECT_FALSE(prefix_set->Exists(kHash3)); EXPECT_TRUE(prefix_set->Exists(kHash4)); EXPECT_TRUE(prefix_set->Exists(kHash5)); EXPECT_FALSE(prefix_set->Exists(kHash6)); EXPECT_TRUE(prefix_set->PrefixExists(kHash1.prefix)); EXPECT_TRUE(prefix_set->PrefixExists(kHash2.prefix)); EXPECT_FALSE(prefix_set->PrefixExists(kHash3.prefix)); EXPECT_FALSE(prefix_set->PrefixExists(kHash4.prefix)); EXPECT_FALSE(prefix_set->PrefixExists(kHash5.prefix)); EXPECT_FALSE(prefix_set->PrefixExists(kHash6.prefix)); } // Test that a version 1 file is discarded on read. TEST_F(PrefixSetTest, ReadSigned) { base::FilePath filename; ASSERT_TRUE(GetPrefixSetFile(&filename)); // Open the file for rewrite. base::ScopedFILE file(base::OpenFile(filename, "r+b")); // Leave existing magic. ASSERT_NE(-1, fseek(file.get(), sizeof(uint32), SEEK_SET)); // Version 1. uint32 version = 1; ASSERT_EQ(sizeof(version), fwrite(&version, 1, sizeof(version), file.get())); // Indicate two index values and two deltas. uint32 val = 2; ASSERT_EQ(sizeof(val), fwrite(&val, 1, sizeof(val), file.get())); ASSERT_EQ(sizeof(val), fwrite(&val, 1, sizeof(val), file.get())); std::pair item; memset(&item, 0, sizeof(item)); // Includes any padding. item.first = -1000; item.second = 0; ASSERT_EQ(sizeof(item), fwrite(&item, 1, sizeof(item), file.get())); item.first = 1000; item.second = 1; ASSERT_EQ(sizeof(item), fwrite(&item, 1, sizeof(item), file.get())); // Write two delta values. uint16 delta = 23; ASSERT_EQ(sizeof(delta), fwrite(&delta, 1, sizeof(delta), file.get())); ASSERT_EQ(sizeof(delta), fwrite(&delta, 1, sizeof(delta), file.get())); // Leave space for the digest at the end, and regenerate it. base::MD5Digest dummy = { { 0 } }; ASSERT_EQ(sizeof(dummy), fwrite(&dummy, 1, sizeof(dummy), file.get())); ASSERT_TRUE(base::TruncateFile(file.get())); CleanChecksum(file.get()); file.reset(); // Flush updates. scoped_ptr prefix_set = PrefixSet::LoadFile(filename); ASSERT_FALSE(prefix_set.get()); } // Test that a golden v2 file is discarded on read. All platforms generating v2 // files are little-endian, so there is no point to testing this transition // if/when a big-endian port is added. #if defined(ARCH_CPU_LITTLE_ENDIAN) TEST_F(PrefixSetTest, Version2) { std::vector ref_prefixes; ASSERT_TRUE(ReadReferencePrefixes(&ref_prefixes)); const char kBasename[] = "PrefixSetVersion2"; base::FilePath golden_path; ASSERT_TRUE(PathService::Get(chrome::DIR_TEST_DATA, &golden_path)); golden_path = golden_path.AppendASCII("SafeBrowsing"); golden_path = golden_path.AppendASCII(kBasename); scoped_ptr prefix_set(PrefixSet::LoadFile(golden_path)); ASSERT_FALSE(prefix_set.get()); } #endif // Test that a golden v3 file can be read by the current code. All platforms // generating v3 files are little-endian, so there is no point to testing this // transition if/when a big-endian port is added. #if defined(ARCH_CPU_LITTLE_ENDIAN) TEST_F(PrefixSetTest, Version3) { std::vector ref_prefixes; ASSERT_TRUE(ReadReferencePrefixes(&ref_prefixes)); const char kBasename[] = "PrefixSetVersion3"; base::FilePath golden_path; ASSERT_TRUE(PathService::Get(chrome::DIR_TEST_DATA, &golden_path)); golden_path = golden_path.AppendASCII("SafeBrowsing"); golden_path = golden_path.AppendASCII(kBasename); scoped_ptr prefix_set(PrefixSet::LoadFile(golden_path)); ASSERT_TRUE(prefix_set.get()); CheckPrefixes(*prefix_set, ref_prefixes); const SBFullHash kHash1 = SBFullHashForString("www.evil.com/malware.html"); const SBFullHash kHash2 = SBFullHashForString("www.evil.com/phishing.html"); EXPECT_TRUE(prefix_set->Exists(kHash1)); EXPECT_TRUE(prefix_set->Exists(kHash2)); EXPECT_FALSE(prefix_set->PrefixExists(kHash1.prefix)); EXPECT_FALSE(prefix_set->PrefixExists(kHash2.prefix)); } #endif } // namespace safe_browsing