// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "chrome/browser/task_manager.h" #include "app/l10n_util.h" #include "app/resource_bundle.h" #include "base/compiler_specific.h" #include "base/process_util.h" #include "base/stats_table.h" #include "base/string_util.h" #include "base/thread.h" #include "chrome/browser/browser_list.h" #include "chrome/browser/browser_process.h" #include "chrome/browser/renderer_host/render_process_host.h" #include "chrome/browser/renderer_host/resource_dispatcher_host.h" #include "chrome/browser/task_manager_resource_providers.h" #include "chrome/common/pref_names.h" #include "chrome/common/pref_service.h" #include "grit/app_resources.h" #include "grit/chromium_strings.h" #include "grit/generated_resources.h" #include "net/url_request/url_request.h" #include "net/url_request/url_request_job.h" // The delay between updates of the information (in ms). static const int kUpdateTimeMs = 1000; template static int ValueCompare(T value1, T value2) { if (value1 < value2) return -1; if (value1 == value2) return 0; return 1; } //////////////////////////////////////////////////////////////////////////////// // TaskManagerModel class //////////////////////////////////////////////////////////////////////////////// // static int TaskManagerModel::goats_teleported_ = 0; TaskManagerModel::TaskManagerModel(TaskManager* task_manager) : ui_loop_(MessageLoop::current()), update_state_(IDLE) { TaskManagerBrowserProcessResourceProvider* browser_provider = new TaskManagerBrowserProcessResourceProvider(task_manager); browser_provider->AddRef(); providers_.push_back(browser_provider); TaskManagerTabContentsResourceProvider* wc_provider = new TaskManagerTabContentsResourceProvider(task_manager); wc_provider->AddRef(); providers_.push_back(wc_provider); TaskManagerChildProcessResourceProvider* child_process_provider = new TaskManagerChildProcessResourceProvider(task_manager); child_process_provider->AddRef(); providers_.push_back(child_process_provider); TaskManagerExtensionProcessResourceProvider* extension_process_provider = new TaskManagerExtensionProcessResourceProvider(task_manager); extension_process_provider->AddRef(); providers_.push_back(extension_process_provider); } TaskManagerModel::~TaskManagerModel() { for (ResourceProviderList::iterator iter = providers_.begin(); iter != providers_.end(); ++iter) { (*iter)->Release(); } } int TaskManagerModel::ResourceCount() const { return resources_.size(); } void TaskManagerModel::AddObserver(TaskManagerModelObserver* observer) { observer_list_.AddObserver(observer); } void TaskManagerModel::RemoveObserver(TaskManagerModelObserver* observer) { observer_list_.RemoveObserver(observer); } std::wstring TaskManagerModel::GetResourceTitle(int index) const { DCHECK(index < ResourceCount()); return resources_[index]->GetTitle(); } std::wstring TaskManagerModel::GetResourceNetworkUsage(int index) const { DCHECK(index < ResourceCount()); int64 net_usage = GetNetworkUsage(resources_[index]); if (net_usage == -1) return l10n_util::GetString(IDS_TASK_MANAGER_NA_CELL_TEXT); if (net_usage == 0) return std::wstring(L"0"); std::wstring net_byte = FormatSpeed(net_usage, GetByteDisplayUnits(net_usage), true); // Force number string to have LTR directionality. if (l10n_util::GetTextDirection() == l10n_util::RIGHT_TO_LEFT) l10n_util::WrapStringWithLTRFormatting(&net_byte); return net_byte; } std::wstring TaskManagerModel::GetResourceCPUUsage(int index) const { DCHECK(index < ResourceCount()); return IntToWString(GetCPUUsage(resources_[index])); } std::wstring TaskManagerModel::GetResourcePrivateMemory(int index) const { DCHECK(index < ResourceCount()); // We report committed (working set + paged) private usage. This is NOT // going to match what Windows Task Manager shows (which is working set). MetricsMap::const_iterator iter = metrics_map_.find(resources_[index]->GetProcess()); DCHECK(iter != metrics_map_.end()); base::ProcessMetrics* process_metrics = iter->second; std::wstring number = FormatNumber(GetPrivateMemory(process_metrics)); return GetMemCellText(&number); } std::wstring TaskManagerModel::GetResourceSharedMemory(int index) const { DCHECK(index < ResourceCount()); MetricsMap::const_iterator iter = metrics_map_.find(resources_[index]->GetProcess()); DCHECK(iter != metrics_map_.end()); base::ProcessMetrics* process_metrics = iter->second; std::wstring number = FormatNumber(GetSharedMemory(process_metrics)); return GetMemCellText(&number); } std::wstring TaskManagerModel::GetResourcePhysicalMemory(int index) const { DCHECK(index < ResourceCount()); MetricsMap::const_iterator iter = metrics_map_.find(resources_[index]->GetProcess()); DCHECK(iter != metrics_map_.end()); base::ProcessMetrics* process_metrics = iter->second; std::wstring number = FormatNumber(GetPhysicalMemory(process_metrics)); return GetMemCellText(&number); } std::wstring TaskManagerModel::GetResourceProcessId(int index) const { DCHECK(index < ResourceCount()); return IntToWString(base::GetProcId(resources_[index]->GetProcess())); } std::wstring TaskManagerModel::GetResourceStatsValue(int index, int col_id) const { DCHECK(index < ResourceCount()); return IntToWString(GetStatsValue(resources_[index], col_id)); } std::wstring TaskManagerModel::GetResourceGoatsTeleported(int index) const { DCHECK(index < ResourceCount()); goats_teleported_ += rand(); return FormatNumber(goats_teleported_); } bool TaskManagerModel::IsResourceFirstInGroup(int index) const { DCHECK(index < ResourceCount()); TaskManager::Resource* resource = resources_[index]; GroupMap::const_iterator iter = group_map_.find(resource->GetProcess()); DCHECK(iter != group_map_.end()); const ResourceList* group = iter->second; return ((*group)[0] == resource); } SkBitmap TaskManagerModel::GetResourceIcon(int index) const { DCHECK(index < ResourceCount()); SkBitmap icon = resources_[index]->GetIcon(); if (!icon.isNull()) return icon; static SkBitmap* default_icon = ResourceBundle::GetSharedInstance(). GetBitmapNamed(IDR_DEFAULT_FAVICON); return *default_icon; } std::pair TaskManagerModel::GetGroupRangeForResource(int index) const { DCHECK(index < ResourceCount()); TaskManager::Resource* resource = resources_[index]; GroupMap::const_iterator group_iter = group_map_.find(resource->GetProcess()); DCHECK(group_iter != group_map_.end()); ResourceList* group = group_iter->second; DCHECK(group); if (group->size() == 1) { return std::make_pair(index, 1); } else { ResourceList::const_iterator iter = std::find(resources_.begin(), resources_.end(), (*group)[0]); DCHECK(iter != resources_.end()); return std::make_pair(iter - resources_.begin(), group->size()); } } int TaskManagerModel::CompareValues(int row1, int row2, int col_id) const { DCHECK(row1 < ResourceCount() && row2 < ResourceCount()); switch (col_id) { case IDS_TASK_MANAGER_PAGE_COLUMN: { // Let's do the default, string compare on the resource title. static Collator* collator = NULL; if (!collator) { UErrorCode create_status = U_ZERO_ERROR; collator = Collator::createInstance(create_status); if (!U_SUCCESS(create_status)) { collator = NULL; NOTREACHED(); } } string16 title1 = WideToUTF16(GetResourceTitle(row1)); string16 title2 = WideToUTF16(GetResourceTitle(row2)); UErrorCode compare_status = U_ZERO_ERROR; UCollationResult compare_result = collator->compare( static_cast(title1.c_str()), static_cast(title1.length()), static_cast(title2.c_str()), static_cast(title2.length()), compare_status); DCHECK(U_SUCCESS(compare_status)); return compare_result; } case IDS_TASK_MANAGER_NET_COLUMN: return ValueCompare(GetNetworkUsage(resources_[row1]), GetNetworkUsage(resources_[row2])); case IDS_TASK_MANAGER_CPU_COLUMN: return ValueCompare(GetCPUUsage(resources_[row1]), GetCPUUsage(resources_[row2])); case IDS_TASK_MANAGER_PRIVATE_MEM_COLUMN: { base::ProcessMetrics* pm1; base::ProcessMetrics* pm2; if (!GetProcessMetricsForRows(row1, row2, &pm1, &pm2)) return 0; return ValueCompare(GetPrivateMemory(pm1), GetPrivateMemory(pm2)); } case IDS_TASK_MANAGER_SHARED_MEM_COLUMN: { base::ProcessMetrics* pm1; base::ProcessMetrics* pm2; if (!GetProcessMetricsForRows(row1, row2, &pm1, &pm2)) return 0; return ValueCompare(GetSharedMemory(pm1), GetSharedMemory(pm2)); } case IDS_TASK_MANAGER_PHYSICAL_MEM_COLUMN: { base::ProcessMetrics* pm1; base::ProcessMetrics* pm2; if (!GetProcessMetricsForRows(row1, row2, &pm1, &pm2)) return 0; return ValueCompare(GetPhysicalMemory(pm1), GetPhysicalMemory(pm2)); } case IDS_TASK_MANAGER_PROCESS_ID_COLUMN: { int proc1_id = base::GetProcId(resources_[row1]->GetProcess()); int proc2_id = base::GetProcId(resources_[row2]->GetProcess()); return ValueCompare(proc1_id, proc2_id); } default: return ValueCompare(GetStatsValue(resources_[row1], col_id), GetStatsValue(resources_[row2], col_id)); } } base::ProcessHandle TaskManagerModel::GetResourceProcessHandle(int index) const { DCHECK(index < ResourceCount()); return resources_[index]->GetProcess(); } TabContents* TaskManagerModel::GetResourceTabContents(int index) const { DCHECK(index < ResourceCount()); return resources_[index]->GetTabContents(); } int64 TaskManagerModel::GetNetworkUsage(TaskManager::Resource* resource) const { int64 net_usage = GetNetworkUsageForResource(resource); if (net_usage == 0 && !resource->SupportNetworkUsage()) return -1; return net_usage; } int TaskManagerModel::GetCPUUsage(TaskManager::Resource* resource) const { CPUUsageMap::const_iterator iter = cpu_usage_map_.find(resource->GetProcess()); if (iter == cpu_usage_map_.end()) return 0; return iter->second; } size_t TaskManagerModel::GetPrivateMemory( const base::ProcessMetrics* process_metrics) const { return process_metrics->GetPrivateBytes() / 1024; } size_t TaskManagerModel::GetSharedMemory( const base::ProcessMetrics* process_metrics) const { base::WorkingSetKBytes ws_usage; process_metrics->GetWorkingSetKBytes(&ws_usage); return ws_usage.shared; } size_t TaskManagerModel::GetPhysicalMemory( const base::ProcessMetrics* process_metrics) const { // Memory = working_set.private + working_set.shareable. // We exclude the shared memory. size_t total_kbytes = process_metrics->GetWorkingSetSize() / 1024; base::WorkingSetKBytes ws_usage; process_metrics->GetWorkingSetKBytes(&ws_usage); total_kbytes -= ws_usage.shared; return total_kbytes; } int TaskManagerModel::GetStatsValue(const TaskManager::Resource* resource, int col_id) const { StatsTable* table = StatsTable::current(); if (table != NULL) { const char* counter = table->GetRowName(col_id); if (counter != NULL && counter[0] != '\0') { return table->GetCounterValue(counter, base::GetProcId(resource->GetProcess())); } else { NOTREACHED() << "Invalid column."; } } return 0; } std::wstring TaskManagerModel::GetMemCellText( std::wstring* number) const { // Adjust number string if necessary. l10n_util::AdjustStringForLocaleDirection(*number, number); return l10n_util::GetStringF(IDS_TASK_MANAGER_MEM_CELL_TEXT, *number); } void TaskManagerModel::StartUpdating() { DCHECK_NE(TASK_PENDING, update_state_); // If update_state_ is STOPPING, it means a task is still pending. Setting // it to TASK_PENDING ensures the tasks keep being posted (by Refresh()). if (update_state_ == IDLE) { MessageLoop::current()->PostDelayedTask(FROM_HERE, NewRunnableMethod(this, &TaskManagerModel::Refresh), kUpdateTimeMs); } update_state_ = TASK_PENDING; // Register jobs notifications so we can compute network usage (it must be // done from the IO thread). base::Thread* thread = g_browser_process->io_thread(); if (thread) thread->message_loop()->PostTask(FROM_HERE, NewRunnableMethod( this, &TaskManagerModel::RegisterForJobDoneNotifications)); // Notify resource providers that we are updating. for (ResourceProviderList::iterator iter = providers_.begin(); iter != providers_.end(); ++iter) { (*iter)->StartUpdating(); } } void TaskManagerModel::StopUpdating() { DCHECK_EQ(TASK_PENDING, update_state_); update_state_ = STOPPING; // Notify resource providers that we are done updating. for (ResourceProviderList::const_iterator iter = providers_.begin(); iter != providers_.end(); ++iter) { (*iter)->StopUpdating(); } // Unregister jobs notification (must be done from the IO thread). base::Thread* thread = g_browser_process->io_thread(); if (thread) thread->message_loop()->PostTask(FROM_HERE, NewRunnableMethod( this, &TaskManagerModel::UnregisterForJobDoneNotifications)); } void TaskManagerModel::AddResourceProvider( TaskManager::ResourceProvider* provider) { DCHECK(provider); providers_.push_back(provider); } void TaskManagerModel::RemoveResourceProvider( TaskManager::ResourceProvider* provider) { DCHECK(provider); ResourceProviderList::iterator iter = std::find(providers_.begin(), providers_.end(), provider); DCHECK(iter != providers_.end()); providers_.erase(iter); } void TaskManagerModel::RegisterForJobDoneNotifications() { g_url_request_job_tracker.AddObserver(this); } void TaskManagerModel::UnregisterForJobDoneNotifications() { g_url_request_job_tracker.RemoveObserver(this); } void TaskManagerModel::AddResource(TaskManager::Resource* resource) { base::ProcessHandle process = resource->GetProcess(); ResourceList* group_entries = NULL; GroupMap::const_iterator group_iter = group_map_.find(process); int new_entry_index = 0; if (group_iter == group_map_.end()) { group_entries = new ResourceList(); group_map_[process] = group_entries; group_entries->push_back(resource); // Not part of a group, just put at the end of the list. resources_.push_back(resource); new_entry_index = static_cast(resources_.size() - 1); } else { group_entries = group_iter->second; group_entries->push_back(resource); // Insert the new entry right after the last entry of its group. ResourceList::iterator iter = std::find(resources_.begin(), resources_.end(), (*group_entries)[group_entries->size() - 2]); DCHECK(iter != resources_.end()); new_entry_index = static_cast(iter - resources_.begin()); resources_.insert(++iter, resource); } // Create the ProcessMetrics for this process if needed (not in map). if (metrics_map_.find(process) == metrics_map_.end()) { base::ProcessMetrics* pm = base::ProcessMetrics::CreateProcessMetrics(process); metrics_map_[process] = pm; } // Notify the table that the contents have changed for it to redraw. FOR_EACH_OBSERVER(TaskManagerModelObserver, observer_list_, OnItemsAdded(new_entry_index, 1)); } void TaskManagerModel::RemoveResource(TaskManager::Resource* resource) { base::ProcessHandle process = resource->GetProcess(); // Find the associated group. GroupMap::iterator group_iter = group_map_.find(process); DCHECK(group_iter != group_map_.end()); ResourceList* group_entries = group_iter->second; // Remove the entry from the group map. ResourceList::iterator iter = std::find(group_entries->begin(), group_entries->end(), resource); DCHECK(iter != group_entries->end()); group_entries->erase(iter); // If there are no more entries for that process, do the clean-up. if (group_entries->empty()) { delete group_entries; group_map_.erase(process); // Nobody is using this process, we don't need the process metrics anymore. MetricsMap::iterator pm_iter = metrics_map_.find(process); DCHECK(pm_iter != metrics_map_.end()); if (pm_iter != metrics_map_.end()) { delete pm_iter->second; metrics_map_.erase(process); } // And we don't need the CPU usage anymore either. CPUUsageMap::iterator cpu_iter = cpu_usage_map_.find(process); if (cpu_iter != cpu_usage_map_.end()) cpu_usage_map_.erase(cpu_iter); } // Remove the entry from the model list. iter = std::find(resources_.begin(), resources_.end(), resource); DCHECK(iter != resources_.end()); int index = static_cast(iter - resources_.begin()); resources_.erase(iter); // Remove the entry from the network maps. ResourceValueMap::iterator net_iter = current_byte_count_map_.find(resource); if (net_iter != current_byte_count_map_.end()) current_byte_count_map_.erase(net_iter); net_iter = displayed_network_usage_map_.find(resource); if (net_iter != displayed_network_usage_map_.end()) displayed_network_usage_map_.erase(net_iter); // Notify the table that the contents have changed. FOR_EACH_OBSERVER(TaskManagerModelObserver, observer_list_, OnItemsRemoved(index, 1)); } void TaskManagerModel::Clear() { int size = ResourceCount(); if (size > 0) { resources_.clear(); // Clear the groups. for (GroupMap::iterator iter = group_map_.begin(); iter != group_map_.end(); ++iter) { delete iter->second; } group_map_.clear(); // Clear the process related info. for (MetricsMap::iterator iter = metrics_map_.begin(); iter != metrics_map_.end(); ++iter) { delete iter->second; } metrics_map_.clear(); cpu_usage_map_.clear(); // Clear the network maps. current_byte_count_map_.clear(); displayed_network_usage_map_.clear(); FOR_EACH_OBSERVER(TaskManagerModelObserver, observer_list_, OnItemsRemoved(0, size)); } } void TaskManagerModel::Refresh() { DCHECK_NE(IDLE, update_state_); if (update_state_ == STOPPING) { // We have been asked to stop. update_state_ = IDLE; return; } // Compute the CPU usage values. // Note that we compute the CPU usage for all resources (instead of doing it // lazily) as process_util::GetCPUUsage() returns the CPU usage since the last // time it was called, and not calling it everytime would skew the value the // next time it is retrieved (as it would be for more than 1 cycle). cpu_usage_map_.clear(); for (ResourceList::iterator iter = resources_.begin(); iter != resources_.end(); ++iter) { base::ProcessHandle process = (*iter)->GetProcess(); CPUUsageMap::iterator cpu_iter = cpu_usage_map_.find(process); if (cpu_iter != cpu_usage_map_.end()) continue; // Already computed. MetricsMap::iterator metrics_iter = metrics_map_.find(process); DCHECK(metrics_iter != metrics_map_.end()); cpu_usage_map_[process] = metrics_iter->second->GetCPUUsage(); } // Compute the new network usage values. displayed_network_usage_map_.clear(); for (ResourceValueMap::iterator iter = current_byte_count_map_.begin(); iter != current_byte_count_map_.end(); ++iter) { if (kUpdateTimeMs > 1000) { int divider = (kUpdateTimeMs / 1000); displayed_network_usage_map_[iter->first] = iter->second / divider; } else { displayed_network_usage_map_[iter->first] = iter->second * (1000 / kUpdateTimeMs); } // Then we reset the current byte count. iter->second = 0; } if (!resources_.empty()) { FOR_EACH_OBSERVER(TaskManagerModelObserver, observer_list_, OnItemsChanged(0, ResourceCount())); } // Schedule the next update. MessageLoop::current()->PostDelayedTask(FROM_HERE, NewRunnableMethod(this, &TaskManagerModel::Refresh), kUpdateTimeMs); } int64 TaskManagerModel::GetNetworkUsageForResource( TaskManager::Resource* resource) const { ResourceValueMap::const_iterator iter = displayed_network_usage_map_.find(resource); if (iter == displayed_network_usage_map_.end()) return 0; return iter->second; } void TaskManagerModel::BytesRead(BytesReadParam param) { if (update_state_ != TASK_PENDING) { // A notification sneaked in while we were stopping the updating, just // ignore it. return; } if (param.byte_count == 0) { // Nothing to do if no bytes were actually read. return; } // TODO(jcampan): this should be improved once we have a better way of // linking a network notification back to the object that initiated it. TaskManager::Resource* resource = NULL; for (ResourceProviderList::iterator iter = providers_.begin(); iter != providers_.end(); ++iter) { resource = (*iter)->GetResource(param.origin_pid, param.render_process_host_id, param.routing_id); if (resource) break; } if (resource == NULL) { // We may not have that resource anymore (example: close a tab while a // a network resource is being retrieved), in which case we just ignore the // notification. return; } // We do support network usage, mark the resource as such so it can report 0 // instead of N/A. if (!resource->SupportNetworkUsage()) resource->SetSupportNetworkUsage(); ResourceValueMap::const_iterator iter_res = current_byte_count_map_.find(resource); if (iter_res == current_byte_count_map_.end()) current_byte_count_map_[resource] = param.byte_count; else current_byte_count_map_[resource] = iter_res->second + param.byte_count; } // In order to retrieve the network usage, we register for URLRequestJob // notifications. Every time we get notified some bytes were read we bump a // counter of read bytes for the associated resource. When the timer ticks, // we'll compute the actual network usage (see the Refresh method). void TaskManagerModel::OnJobAdded(URLRequestJob* job) { } void TaskManagerModel::OnJobRemoved(URLRequestJob* job) { } void TaskManagerModel::OnJobDone(URLRequestJob* job, const URLRequestStatus& status) { } void TaskManagerModel::OnJobRedirect(URLRequestJob* job, const GURL& location, int status_code) { } void TaskManagerModel::OnBytesRead(URLRequestJob* job, int byte_count) { int render_process_host_id = -1, routing_id = -1; ResourceDispatcherHost::RenderViewForRequest(job->request(), &render_process_host_id, &routing_id); // This happens in the IO thread, post it to the UI thread. ui_loop_->PostTask(FROM_HERE, NewRunnableMethod( this, &TaskManagerModel::BytesRead, BytesReadParam(job->request()->origin_pid(), render_process_host_id, routing_id, byte_count))); } bool TaskManagerModel::GetProcessMetricsForRows( int row1, int row2, base::ProcessMetrics** proc_metrics1, base::ProcessMetrics** proc_metrics2) const { DCHECK(row1 < ResourceCount() && row2 < ResourceCount()); *proc_metrics1 = NULL; *proc_metrics2 = NULL; MetricsMap::const_iterator iter = metrics_map_.find(resources_[row1]->GetProcess()); if (iter == metrics_map_.end()) return false; *proc_metrics1 = iter->second; iter = metrics_map_.find(resources_[row2]->GetProcess()); if (iter == metrics_map_.end()) return false; *proc_metrics2 = iter->second; return true; } //////////////////////////////////////////////////////////////////////////////// // TaskManager class //////////////////////////////////////////////////////////////////////////////// // static void TaskManager::RegisterPrefs(PrefService* prefs) { prefs->RegisterDictionaryPref(prefs::kTaskManagerWindowPlacement); } TaskManager::TaskManager() : ALLOW_THIS_IN_INITIALIZER_LIST(model_(new TaskManagerModel(this))) { } TaskManager::~TaskManager() { } bool TaskManager::IsBrowserProcess(int index) const { // If some of the selection is out of bounds, ignore. This may happen when // killing a process that manages several pages. return index < model_->ResourceCount() && model_->GetResourceProcessHandle(index) == base::GetCurrentProcessHandle(); } void TaskManager::KillProcess(int index) { base::ProcessHandle process = model_->GetResourceProcessHandle(index); DCHECK(process); if (process != base::GetCurrentProcessHandle()) base::KillProcess(process, base::PROCESS_END_KILLED_BY_USER, false); } void TaskManager::ActivateProcess(int index) { // GetResourceTabContents returns a pointer to the relevant tab contents for // the resource. If the index doesn't correspond to a Tab (i.e. refers to // the Browser process or a plugin), GetTabContents will return NULL. TabContents* chosen_tab_contents = model_->GetResourceTabContents(index); if (chosen_tab_contents) chosen_tab_contents->Activate(); } void TaskManager::AddResourceProvider(ResourceProvider* provider) { model_->AddResourceProvider(provider); } void TaskManager::RemoveResourceProvider(ResourceProvider* provider) { model_->RemoveResourceProvider(provider); } void TaskManager::AddResource(Resource* resource) { model_->AddResource(resource); } void TaskManager::RemoveResource(Resource* resource) { model_->RemoveResource(resource); } void TaskManager::OnWindowClosed() { model_->StopUpdating(); model_->Clear(); } // static TaskManager* TaskManager::GetInstance() { return Singleton::get(); }