// Copyright (c) 2009 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include #include #include #include #include #include #include "base/basictypes.h" #include "base/command_line.h" #include "base/eintr_wrapper.h" #include "base/global_descriptors_posix.h" #include "base/pickle.h" #include "base/rand_util.h" #include "base/unix_domain_socket_posix.h" #include "chrome/browser/zygote_host_linux.h" #include "chrome/common/chrome_descriptors.h" #include "chrome/common/chrome_switches.h" #include "chrome/common/main_function_params.h" #include "chrome/common/process_watcher.h" #include "chrome/common/sandbox_methods_linux.h" #include "skia/ext/SkFontHost_fontconfig_control.h" // http://code.google.com/p/chromium/wiki/LinuxZygote static const int kMagicSandboxIPCDescriptor = 5; // This is the object which implements the zygote. The ZygoteMain function, // which is called from ChromeMain, at the the bottom and simple constructs one // of these objects and runs it. class Zygote { public: bool ProcessRequests() { // A SOCK_SEQPACKET socket is installed in fd 3. We get commands from the // browser on it. // A SOCK_DGRAM is installed in fd 4. This is the sandbox IPC channel. // See http://code.google.com/p/chromium/wiki/LinuxSandboxIPC // We need to accept SIGCHLD, even though our handler is a no-op because // otherwise we cannot wait on children. (According to POSIX 2001.) struct sigaction action; memset(&action, 0, sizeof(action)); action.sa_handler = SIGCHLDHandler; CHECK(sigaction(SIGCHLD, &action, NULL) == 0); for (;;) { if (HandleRequestFromBrowser(3)) return true; } } private: // See comment below, where sigaction is called. static void SIGCHLDHandler(int signal) { } // --------------------------------------------------------------------------- // Requests from the browser... // Read and process a request from the browser. Returns true if we are in a // new process and thus need to unwind back into ChromeMain. bool HandleRequestFromBrowser(int fd) { std::vector fds; static const unsigned kMaxMessageLength = 1024; char buf[kMaxMessageLength]; const ssize_t len = base::RecvMsg(fd, buf, sizeof(buf), &fds); if (len == -1) { LOG(WARNING) << "Error reading message from browser: " << errno; return false; } if (len == 0) { // EOF from the browser. We should die. _exit(0); return false; } Pickle pickle(buf, len); void* iter = NULL; int kind; if (pickle.ReadInt(&iter, &kind)) { switch (kind) { case ZygoteHost::kCmdFork: return HandleForkRequest(fd, pickle, iter, fds); case ZygoteHost::kCmdReap: if (!fds.empty()) break; return HandleReapRequest(fd, pickle, iter); case ZygoteHost::kCmdDidProcessCrash: if (!fds.empty()) break; return HandleDidProcessCrash(fd, pickle, iter); default: NOTREACHED(); break; } } LOG(WARNING) << "Error parsing message from browser"; for (std::vector::const_iterator i = fds.begin(); i != fds.end(); ++i) close(*i); return false; } bool HandleReapRequest(int fd, Pickle& pickle, void* iter) { pid_t child; if (!pickle.ReadInt(&iter, &child)) { LOG(WARNING) << "Error parsing reap request from browser"; return false; } ProcessWatcher::EnsureProcessTerminated(child); return false; } bool HandleDidProcessCrash(int fd, Pickle& pickle, void* iter) { base::ProcessHandle child; if (!pickle.ReadInt(&iter, &child)) { LOG(WARNING) << "Error parsing DidProcessCrash request from browser"; return false; } bool child_exited; bool did_crash = base::DidProcessCrash(&child_exited, child); Pickle write_pickle; write_pickle.WriteBool(did_crash); write_pickle.WriteBool(child_exited); HANDLE_EINTR(write(fd, write_pickle.data(), write_pickle.size())); return false; } // Handle a 'fork' request from the browser: this means that the browser // wishes to start a new renderer. bool HandleForkRequest(int fd, Pickle& pickle, void* iter, std::vector& fds) { std::vector args; int argc, numfds; base::GlobalDescriptors::Mapping mapping; pid_t child; if (!pickle.ReadInt(&iter, &argc)) goto error; for (int i = 0; i < argc; ++i) { std::string arg; if (!pickle.ReadString(&iter, &arg)) goto error; args.push_back(arg); } if (!pickle.ReadInt(&iter, &numfds)) goto error; if (numfds != static_cast(fds.size())) goto error; for (int i = 0; i < numfds; ++i) { base::GlobalDescriptors::Key key; if (!pickle.ReadUInt32(&iter, &key)) goto error; mapping.push_back(std::make_pair(key, fds[i])); } mapping.push_back(std::make_pair( static_cast(kSandboxIPCChannel), 5)); child = fork(); if (!child) { close(3); // our socket from the browser is in fd 3 Singleton()->Reset(mapping); CommandLine::Reset(); CommandLine::Init(args); return true; } for (std::vector::const_iterator i = fds.begin(); i != fds.end(); ++i) close(*i); HANDLE_EINTR(write(fd, &child, sizeof(child))); return false; error: LOG(WARNING) << "Error parsing fork request from browser"; for (std::vector::const_iterator i = fds.begin(); i != fds.end(); ++i) close(*i); return false; } }; // Patched dynamic symbol wrapper functions... namespace sandbox_wrapper { void do_localtime(time_t input, struct tm* output, char* timezone_out, size_t timezone_out_len) { Pickle request; request.WriteInt(LinuxSandbox::METHOD_LOCALTIME); request.WriteString( std::string(reinterpret_cast(&input), sizeof(input))); uint8_t reply_buf[512]; const ssize_t r = base::SendRecvMsg( kMagicSandboxIPCDescriptor, reply_buf, sizeof(reply_buf), NULL, request); if (r == -1) { memset(output, 0, sizeof(struct tm)); return; } Pickle reply(reinterpret_cast(reply_buf), r); void* iter = NULL; std::string result, timezone; if (!reply.ReadString(&iter, &result) || !reply.ReadString(&iter, &timezone) || result.size() != sizeof(struct tm)) { memset(output, 0, sizeof(struct tm)); return; } memcpy(output, result.data(), sizeof(struct tm)); if (timezone_out_len) { const size_t copy_len = std::min(timezone_out_len - 1, timezone.size()); memcpy(timezone_out, timezone.data(), copy_len); timezone_out[copy_len] = 0; output->tm_zone = timezone_out; } else { output->tm_zone = NULL; } } struct tm* localtime(const time_t* timep) { static struct tm time_struct; static char timezone_string[64]; do_localtime(*timep, &time_struct, timezone_string, sizeof(timezone_string)); return &time_struct; } struct tm* localtime_r(const time_t* timep, struct tm* result) { do_localtime(*timep, result, NULL, 0); return result; } } // namespace sandbox_wrapper /* On IA-32, function calls which need to be resolved by the dynamic linker are * directed to the producure linking table (PLT). Each PLT entry contains code * which jumps (indirectly) via the global offset table (GOT): * Dump of assembler code for function f@plt: * 0x0804830c : jmp *0x804a004 # GOT indirect jump * 0x08048312 : push $0x8 * 0x08048317 : jmp 0x80482ec <_init+48> * * At the beginning of a process's lifetime, the GOT entry jumps back to * end then enters the dynamic linker. Once the symbol has been * resolved, the GOT entry is patched so that future calls go directly to the * resolved function. * * This macro finds the PLT entry for a given symbol, |symbol|, and reads the * GOT entry address from the first instruction. It then patches that address * with the address of a replacement function, |replacement|. */ #define PATCH_GLOBAL_OFFSET_TABLE(symbol, replacement) \ /* First, get the current instruction pointer since the PLT address */ \ /* is IP relative */ \ asm ("call 0f\n" \ "0: pop %%ecx\n" \ /* Move the IP relative address of the PLT entry into EAX */ \ "mov $" #symbol "@plt,%%eax\n" \ /* Add EAX to ECX to get an absolute entry */ \ "add %%eax,%%ecx\n" \ /* The value in ECX was relative to the add instruction, however, */ \ /* the IP value was that of the pop. The pop and mov take 6 */ \ /* bytes, so adding 6 gets us the correct address for the PLT. The */ \ /* first instruction at the PLT is FF 25 , so we skip 2 */ \ /* bytes to get to the address. 6 + 2 = 8: */ \ "movl 8(%%ecx),%%ecx\n" \ /* Now ECX contains the address of the GOT entry, we poke our */ \ /* replacement function in there: */ \ "movl %0,(%%ecx)\n" \ : /* no output */ \ : "r" (replacement) \ : "memory", "%eax", "%ecx"); static bool MaybeEnterChroot() { const char* const sandbox_fd_string = getenv("SBX_D"); if (sandbox_fd_string) { // The SUID sandbox sets this environment variable to a file descriptor // over which we can signal that we have completed our startup and can be // chrooted. char* endptr; const long fd_long = strtol(sandbox_fd_string, &endptr, 10); if (!*sandbox_fd_string || *endptr || fd_long < 0 || fd_long > INT_MAX) return false; const int fd = fd_long; // Before entering the sandbox, "prime" any systems that need to open // files and cache the results or the descriptors. base::RandUint64(); // To make wcstombs/mbstowcs work in a renderer, setlocale() has to be // called before the sandbox is triggered. It's possible to avoid calling // setlocale() by pulling out the conversion between FilePath and // WebCore String out of the renderer and using string16 in place of // FilePath for IPC. const char* locale = setlocale(LC_ALL, ""); LOG_IF(WARNING, locale == NULL) << "setlocale failed."; #if defined(ARCH_CPU_X86) PATCH_GLOBAL_OFFSET_TABLE(localtime, sandbox_wrapper::localtime); PATCH_GLOBAL_OFFSET_TABLE(localtime_r, sandbox_wrapper::localtime_r); #endif static const char kChrootMe = 'C'; static const char kChrootMeSuccess = 'O'; if (HANDLE_EINTR(write(fd, &kChrootMe, 1)) != 1) { LOG(ERROR) << "Failed to write to chroot pipe: " << errno; return false; } // We need to reap the chroot helper process in any event: wait(NULL); char reply; if (HANDLE_EINTR(read(fd, &reply, 1)) != 1) { LOG(ERROR) << "Failed to read from chroot pipe: " << errno; return false; } if (reply != kChrootMeSuccess) { LOG(ERROR) << "Error code reply from chroot helper"; return false; } SkiaFontConfigUseIPCImplementation(kMagicSandboxIPCDescriptor); // Previously, we required that the binary be non-readable. This causes the // kernel to mark the process as non-dumpable at startup. The thinking was // that, although we were putting the renderers into a PID namespace (with // the SUID sandbox), they would nonetheless be in the /same/ PID // namespace. So they could ptrace each other unless they were non-dumpable. // // If the binary was readable, then there would be a window between process // startup and the point where we set the non-dumpable flag in which a // compromised renderer could ptrace attach. // // However, now that we have a zygote model, only the (trusted) zygote // exists at this point and we can set the non-dumpable flag which is // inherited by all our renderer children. // // Note: a non-dumpable process can't be debugged. To debug sandbox-related // issues, one can specify --allow-sandbox-debugging to let the process be // dumpable. const CommandLine& command_line = *CommandLine::ForCurrentProcess(); if (!command_line.HasSwitch(switches::kAllowSandboxDebugging)) { prctl(PR_SET_DUMPABLE, 0, 0, 0, 0); if (prctl(PR_GET_DUMPABLE, 0, 0, 0, 0)) { LOG(ERROR) << "Failed to set non-dumpable flag"; return false; } } } else { SkiaFontConfigUseDirectImplementation(); } return true; } bool ZygoteMain(const MainFunctionParams& params) { if (!MaybeEnterChroot()) { LOG(FATAL) << "Failed to enter sandbox. Fail safe abort. (errno: " << errno << ")"; return false; } Zygote zygote; return zygote.ProcessRequests(); }