// Copyright (c) 2009 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include #include #include #include #include #include #include #include #include #if defined(CHROMIUM_SELINUX) #include #include #endif #include "base/basictypes.h" #include "base/command_line.h" #include "base/eintr_wrapper.h" #include "base/file_util.h" #include "base/global_descriptors_posix.h" #include "base/hash_tables.h" #include "base/linux_util.h" #include "base/path_service.h" #include "base/pickle.h" #include "base/rand_util.h" #include "base/scoped_ptr.h" #include "base/sys_info.h" #include "base/unix_domain_socket_posix.h" #include "build/build_config.h" #include "chrome/browser/zygote_host_linux.h" #include "chrome/common/chrome_descriptors.h" #include "chrome/common/chrome_paths.h" #include "chrome/common/chrome_switches.h" #include "chrome/common/main_function_params.h" #include "chrome/common/process_watcher.h" #include "chrome/common/sandbox_methods_linux.h" #include "media/base/media.h" #include "skia/ext/SkFontHost_fontconfig_control.h" #include "sandbox/linux/seccomp/sandbox.h" #include "unicode/timezone.h" #include "webkit/glue/plugins/plugin_lib.h" #if defined(ARCH_CPU_X86_FAMILY) && !defined(CHROMIUM_SELINUX) // The seccomp sandbox is enabled on all ia32 and x86-64 processor as long as // we aren't using SELinux. #define SECCOMP_SANDBOX #endif // http://code.google.com/p/chromium/wiki/LinuxZygote static const int kBrowserDescriptor = 3; static const int kMagicSandboxIPCDescriptor = 5; static const int kZygoteIdDescriptor = 7; static bool g_suid_sandbox_active = false; #if defined(SECCOMP_SANDBOX) // |g_proc_fd| is used only by the seccomp sandbox. static int g_proc_fd = -1; #endif #if defined(CHROMIUM_SELINUX) static void SELinuxTransitionToTypeOrDie(const char* type) { security_context_t security_context; if (getcon(&security_context)) LOG(FATAL) << "Cannot get SELinux context"; context_t context = context_new(security_context); context_type_set(context, type); const int r = setcon(context_str(context)); context_free(context); freecon(security_context); if (r) { LOG(FATAL) << "dynamic transition to type '" << type << "' failed. " "(this binary has been built with SELinux support, but maybe " "the policies haven't been loaded into the kernel?)"; } } #endif // CHROMIUM_SELINUX // This is the object which implements the zygote. The ZygoteMain function, // which is called from ChromeMain, at the the bottom and simple constructs one // of these objects and runs it. class Zygote { public: bool ProcessRequests() { // A SOCK_SEQPACKET socket is installed in fd 3. We get commands from the // browser on it. // A SOCK_DGRAM is installed in fd 5. This is the sandbox IPC channel. // See http://code.google.com/p/chromium/wiki/LinuxSandboxIPC // We need to accept SIGCHLD, even though our handler is a no-op because // otherwise we cannot wait on children. (According to POSIX 2001.) struct sigaction action; memset(&action, 0, sizeof(action)); action.sa_handler = SIGCHLDHandler; CHECK(sigaction(SIGCHLD, &action, NULL) == 0); if (g_suid_sandbox_active) { // Let the ZygoteHost know we are ready to go. // The receiving code is in chrome/browser/zygote_host_linux.cc. std::vector empty; bool r = base::SendMsg(kBrowserDescriptor, kZygoteMagic, sizeof(kZygoteMagic), empty); CHECK(r) << "Sending zygote magic failed"; } for (;;) { // This function call can return multiple times, once per fork(). if (HandleRequestFromBrowser(kBrowserDescriptor)) return true; } } private: // See comment below, where sigaction is called. static void SIGCHLDHandler(int signal) { } // --------------------------------------------------------------------------- // Requests from the browser... // Read and process a request from the browser. Returns true if we are in a // new process and thus need to unwind back into ChromeMain. bool HandleRequestFromBrowser(int fd) { std::vector fds; static const unsigned kMaxMessageLength = 1024; char buf[kMaxMessageLength]; const ssize_t len = base::RecvMsg(fd, buf, sizeof(buf), &fds); if (len == -1) { LOG(WARNING) << "Error reading message from browser: " << errno; return false; } if (len == 0) { // EOF from the browser. We should die. _exit(0); return false; } Pickle pickle(buf, len); void* iter = NULL; int kind; if (pickle.ReadInt(&iter, &kind)) { switch (kind) { case ZygoteHost::kCmdFork: // This function call can return multiple times, once per fork(). return HandleForkRequest(fd, pickle, iter, fds); case ZygoteHost::kCmdReap: if (!fds.empty()) break; HandleReapRequest(fd, pickle, iter); return false; case ZygoteHost::kCmdDidProcessCrash: if (!fds.empty()) break; HandleDidProcessCrash(fd, pickle, iter); return false; default: NOTREACHED(); break; } } LOG(WARNING) << "Error parsing message from browser"; for (std::vector::const_iterator i = fds.begin(); i != fds.end(); ++i) close(*i); return false; } void HandleReapRequest(int fd, const Pickle& pickle, void* iter) { base::ProcessId child; base::ProcessId actual_child; if (!pickle.ReadInt(&iter, &child)) { LOG(WARNING) << "Error parsing reap request from browser"; return; } if (g_suid_sandbox_active) { actual_child = real_pids_to_sandbox_pids[child]; if (!actual_child) return; real_pids_to_sandbox_pids.erase(child); } else { actual_child = child; } ProcessWatcher::EnsureProcessTerminated(actual_child); } void HandleDidProcessCrash(int fd, const Pickle& pickle, void* iter) { base::ProcessHandle child; if (!pickle.ReadInt(&iter, &child)) { LOG(WARNING) << "Error parsing DidProcessCrash request from browser"; return; } bool child_exited; bool did_crash; if (g_suid_sandbox_active) child = real_pids_to_sandbox_pids[child]; if (child) did_crash = base::DidProcessCrash(&child_exited, child); else did_crash = child_exited = false; Pickle write_pickle; write_pickle.WriteBool(did_crash); write_pickle.WriteBool(child_exited); if (HANDLE_EINTR(write(fd, write_pickle.data(), write_pickle.size())) != write_pickle.size()) { PLOG(ERROR) << "write"; } } // Handle a 'fork' request from the browser: this means that the browser // wishes to start a new renderer. bool HandleForkRequest(int fd, const Pickle& pickle, void* iter, std::vector& fds) { std::vector args; int argc, numfds; base::GlobalDescriptors::Mapping mapping; base::ProcessId child; uint64_t dummy_inode = 0; int dummy_fd = -1; if (!pickle.ReadInt(&iter, &argc)) goto error; for (int i = 0; i < argc; ++i) { std::string arg; if (!pickle.ReadString(&iter, &arg)) goto error; args.push_back(arg); } if (!pickle.ReadInt(&iter, &numfds)) goto error; if (numfds != static_cast(fds.size())) goto error; for (int i = 0; i < numfds; ++i) { base::GlobalDescriptors::Key key; if (!pickle.ReadUInt32(&iter, &key)) goto error; mapping.push_back(std::make_pair(key, fds[i])); } mapping.push_back(std::make_pair( static_cast(kSandboxIPCChannel), kMagicSandboxIPCDescriptor)); if (g_suid_sandbox_active) { dummy_fd = socket(PF_UNIX, SOCK_DGRAM, 0); if (dummy_fd < 0) goto error; if (!base::FileDescriptorGetInode(&dummy_inode, dummy_fd)) goto error; } child = fork(); if (!child) { #if defined(SECCOMP_SANDBOX) // Try to open /proc/self/maps as the seccomp sandbox needs access to it if (g_proc_fd >= 0) { int proc_self_maps = openat(g_proc_fd, "self/maps", O_RDONLY); if (proc_self_maps >= 0) { SeccompSandboxSetProcSelfMaps(proc_self_maps); } close(g_proc_fd); g_proc_fd = -1; } #endif close(kBrowserDescriptor); // our socket from the browser if (g_suid_sandbox_active) close(kZygoteIdDescriptor); // another socket from the browser Singleton()->Reset(mapping); #if defined(CHROMIUM_SELINUX) SELinuxTransitionToTypeOrDie("chromium_renderer_t"); #endif // Reset the process-wide command line to our new command line. CommandLine::Reset(); CommandLine::Init(0, NULL); CommandLine::ForCurrentProcess()->InitFromArgv(args); CommandLine::SetProcTitle(); // The fork() request is handled further up the call stack. return true; } else if (child < 0) { LOG(ERROR) << "Zygote could not fork: " << errno; goto error; } { base::ProcessId proc_id; if (g_suid_sandbox_active) { close(dummy_fd); dummy_fd = -1; uint8_t reply_buf[512]; Pickle request; request.WriteInt(LinuxSandbox::METHOD_GET_CHILD_WITH_INODE); request.WriteUInt64(dummy_inode); const ssize_t r = base::SendRecvMsg(kMagicSandboxIPCDescriptor, reply_buf, sizeof(reply_buf), NULL, request); if (r == -1) goto error; Pickle reply(reinterpret_cast(reply_buf), r); void* iter2 = NULL; if (!reply.ReadInt(&iter2, &proc_id)) goto error; real_pids_to_sandbox_pids[proc_id] = child; } else { proc_id = child; } for (std::vector::const_iterator i = fds.begin(); i != fds.end(); ++i) close(*i); if (HANDLE_EINTR(write(fd, &proc_id, sizeof(proc_id))) < 0) PLOG(ERROR) << "write"; return false; } error: LOG(ERROR) << "Error parsing fork request from browser"; for (std::vector::const_iterator i = fds.begin(); i != fds.end(); ++i) close(*i); if (dummy_fd >= 0) close(dummy_fd); return false; } // In the SUID sandbox, we try to use a new PID namespace. Thus the PIDs // fork() returns are not the real PIDs, so we need to map the Real PIDS // into the sandbox PID namespace. typedef base::hash_map ProcessMap; ProcessMap real_pids_to_sandbox_pids; }; // With SELinux we can carve out a precise sandbox, so we don't have to play // with intercepting libc calls. #if !defined(CHROMIUM_SELINUX) static void ProxyLocaltimeCallToBrowser(time_t input, struct tm* output, char* timezone_out, size_t timezone_out_len) { Pickle request; request.WriteInt(LinuxSandbox::METHOD_LOCALTIME); request.WriteString( std::string(reinterpret_cast(&input), sizeof(input))); uint8_t reply_buf[512]; const ssize_t r = base::SendRecvMsg( kMagicSandboxIPCDescriptor, reply_buf, sizeof(reply_buf), NULL, request); if (r == -1) { memset(output, 0, sizeof(struct tm)); return; } Pickle reply(reinterpret_cast(reply_buf), r); void* iter = NULL; std::string result, timezone; if (!reply.ReadString(&iter, &result) || !reply.ReadString(&iter, &timezone) || result.size() != sizeof(struct tm)) { memset(output, 0, sizeof(struct tm)); return; } memcpy(output, result.data(), sizeof(struct tm)); if (timezone_out_len) { const size_t copy_len = std::min(timezone_out_len - 1, timezone.size()); memcpy(timezone_out, timezone.data(), copy_len); timezone_out[copy_len] = 0; output->tm_zone = timezone_out; } else { output->tm_zone = NULL; } } static bool g_am_zygote_or_renderer = false; // Sandbox interception of libc calls. // // Because we are running in a sandbox certain libc calls will fail (localtime // being the motivating example - it needs to read /etc/localtime). We need to // intercept these calls and proxy them to the browser. However, these calls // may come from us or from our libraries. In some cases we can't just change // our code. // // It's for these cases that we have the following setup: // // We define global functions for those functions which we wish to override. // Since we will be first in the dynamic resolution order, the dynamic linker // will point callers to our versions of these functions. However, we have the // same binary for both the browser and the renderers, which means that our // overrides will apply in the browser too. // // The global |g_am_zygote_or_renderer| is true iff we are in a zygote or // renderer process. It's set in ZygoteMain and inherited by the renderers when // they fork. (This means that it'll be incorrect for global constructor // functions and before ZygoteMain is called - beware). // // Our replacement functions can check this global and either proxy // the call to the browser over the sandbox IPC // (http://code.google.com/p/chromium/wiki/LinuxSandboxIPC) or they can use // dlsym with RTLD_NEXT to resolve the symbol, ignoring any symbols in the // current module. // // Other avenues: // // Our first attempt involved some assembly to patch the GOT of the current // module. This worked, but was platform specific and doesn't catch the case // where a library makes a call rather than current module. // // We also considered patching the function in place, but this would again by // platform specific and the above technique seems to work well enough. static void WarnOnceAboutBrokenDlsym(); struct tm* localtime(const time_t* timep) { if (g_am_zygote_or_renderer) { static struct tm time_struct; static char timezone_string[64]; ProxyLocaltimeCallToBrowser(*timep, &time_struct, timezone_string, sizeof(timezone_string)); return &time_struct; } else { typedef struct tm* (*LocaltimeFunction)(const time_t* timep); static LocaltimeFunction libc_localtime; static bool have_libc_localtime = false; if (!have_libc_localtime) { libc_localtime = (LocaltimeFunction) dlsym(RTLD_NEXT, "localtime"); have_libc_localtime = true; } if (!libc_localtime) { // http://code.google.com/p/chromium/issues/detail?id=16800 // // Nvidia's libGL.so overrides dlsym for an unknown reason and replaces // it with a version which doesn't work. In this case we'll get a NULL // result. There's not a lot we can do at this point, so we just bodge it! WarnOnceAboutBrokenDlsym(); return gmtime(timep); } return libc_localtime(timep); } } struct tm* localtime_r(const time_t* timep, struct tm* result) { if (g_am_zygote_or_renderer) { ProxyLocaltimeCallToBrowser(*timep, result, NULL, 0); return result; } else { typedef struct tm* (*LocaltimeRFunction)(const time_t* timep, struct tm* result); static LocaltimeRFunction libc_localtime_r; static bool have_libc_localtime_r = false; if (!have_libc_localtime_r) { libc_localtime_r = (LocaltimeRFunction) dlsym(RTLD_NEXT, "localtime_r"); have_libc_localtime_r = true; } if (!libc_localtime_r) { // See |localtime|, above. WarnOnceAboutBrokenDlsym(); return gmtime_r(timep, result); } return libc_localtime_r(timep, result); } } // See the comments at the callsite in |localtime| about this function. static void WarnOnceAboutBrokenDlsym() { static bool have_shown_warning = false; if (!have_shown_warning) { LOG(ERROR) << "Your system is broken: dlsym doesn't work! This has been " "reported to be caused by Nvidia's libGL. You should expect " "time related functions to misbehave. " "http://code.google.com/p/chromium/issues/detail?id=16800"; have_shown_warning = true; } } #endif // !CHROMIUM_SELINUX // This function triggers the static and lazy construction of objects that need // to be created before imposing the sandbox. static void PreSandboxInit() { base::RandUint64(); base::SysInfo::MaxSharedMemorySize(); // To make wcstombs/mbstowcs work in a renderer, setlocale() has to be // called before the sandbox is triggered. It's possible to avoid calling // setlocale() by pulling out the conversion between FilePath and // WebCore String out of the renderer and using string16 in place of // FilePath for IPC. const char* locale = setlocale(LC_ALL, ""); LOG_IF(WARNING, locale == NULL) << "setlocale failed."; // ICU DateFormat class (used in base/time_format.cc) needs to get the // Olson timezone ID by accessing the zoneinfo files on disk. After // TimeZone::createDefault is called once here, the timezone ID is // cached and there's no more need to access the file system. scoped_ptr zone(icu::TimeZone::createDefault()); FilePath module_path; if (PathService::Get(base::DIR_MODULE, &module_path)) media::InitializeMediaLibrary(module_path); // Load the PDF plugin before the sandbox is turned on. FilePath pdf; if (PathService::Get(chrome::FILE_PDF_PLUGIN, &pdf) && file_util::PathExists(pdf)) { static scoped_refptr pdf_lib = NPAPI::PluginLib::CreatePluginLib(pdf); bool rv = pdf_lib && pdf_lib->EnsureAlwaysLoaded(); DCHECK(rv) << "Couldn't load PDF plugin"; } } #if !defined(CHROMIUM_SELINUX) static bool EnterSandbox() { // The SUID sandbox sets this environment variable to a file descriptor // over which we can signal that we have completed our startup and can be // chrooted. const char* const sandbox_fd_string = getenv("SBX_D"); if (switches::SeccompSandboxEnabled()) { PreSandboxInit(); SkiaFontConfigUseIPCImplementation(kMagicSandboxIPCDescriptor); } else if (sandbox_fd_string) { // Use the SUID sandbox. g_suid_sandbox_active = true; char* endptr; const long fd_long = strtol(sandbox_fd_string, &endptr, 10); if (!*sandbox_fd_string || *endptr || fd_long < 0 || fd_long > INT_MAX) return false; const int fd = fd_long; PreSandboxInit(); static const char kMsgChrootMe = 'C'; static const char kMsgChrootSuccessful = 'O'; if (HANDLE_EINTR(write(fd, &kMsgChrootMe, 1)) != 1) { LOG(ERROR) << "Failed to write to chroot pipe: " << errno; return false; } // We need to reap the chroot helper process in any event: wait(NULL); char reply; if (HANDLE_EINTR(read(fd, &reply, 1)) != 1) { LOG(ERROR) << "Failed to read from chroot pipe: " << errno; return false; } if (reply != kMsgChrootSuccessful) { LOG(ERROR) << "Error code reply from chroot helper"; return false; } SkiaFontConfigUseIPCImplementation(kMagicSandboxIPCDescriptor); // Previously, we required that the binary be non-readable. This causes the // kernel to mark the process as non-dumpable at startup. The thinking was // that, although we were putting the renderers into a PID namespace (with // the SUID sandbox), they would nonetheless be in the /same/ PID // namespace. So they could ptrace each other unless they were non-dumpable. // // If the binary was readable, then there would be a window between process // startup and the point where we set the non-dumpable flag in which a // compromised renderer could ptrace attach. // // However, now that we have a zygote model, only the (trusted) zygote // exists at this point and we can set the non-dumpable flag which is // inherited by all our renderer children. // // Note: a non-dumpable process can't be debugged. To debug sandbox-related // issues, one can specify --allow-sandbox-debugging to let the process be // dumpable. const CommandLine& command_line = *CommandLine::ForCurrentProcess(); if (!command_line.HasSwitch(switches::kAllowSandboxDebugging)) { prctl(PR_SET_DUMPABLE, 0, 0, 0, 0); if (prctl(PR_GET_DUMPABLE, 0, 0, 0, 0)) { LOG(ERROR) << "Failed to set non-dumpable flag"; return false; } } } else { SkiaFontConfigUseDirectImplementation(); } return true; } #else // CHROMIUM_SELINUX static bool EnterSandbox() { PreSandboxInit(); SkiaFontConfigUseIPCImplementation(kMagicSandboxIPCDescriptor); return true; } #endif // CHROMIUM_SELINUX bool ZygoteMain(const MainFunctionParams& params) { #if !defined(CHROMIUM_SELINUX) g_am_zygote_or_renderer = true; #endif #if defined(SECCOMP_SANDBOX) // The seccomp sandbox needs access to files in /proc, which might be denied // after one of the other sandboxes have been started. So, obtain a suitable // file handle in advance. if (switches::SeccompSandboxEnabled()) { g_proc_fd = open("/proc", O_DIRECTORY | O_RDONLY); if (g_proc_fd < 0) { LOG(ERROR) << "WARNING! Cannot access \"/proc\". Disabling seccomp " "sandboxing."; } } #endif // SECCOMP_SANDBOX // Turn on the SELinux or SUID sandbox if (!EnterSandbox()) { LOG(FATAL) << "Failed to enter sandbox. Fail safe abort. (errno: " << errno << ")"; return false; } #if defined(SECCOMP_SANDBOX) // The seccomp sandbox will be turned on when the renderers start. But we can // already check if sufficient support is available so that we only need to // print one error message for the entire browser session. if (g_proc_fd >= 0 && switches::SeccompSandboxEnabled()) { if (!SupportsSeccompSandbox(g_proc_fd)) { // There are a good number of users who cannot use the seccomp sandbox // (e.g. because their distribution does not enable seccomp mode by // default). While we would prefer to deny execution in this case, it // seems more realistic to continue in degraded mode. LOG(ERROR) << "WARNING! This machine lacks support needed for the " "Seccomp sandbox. Running renderers with Seccomp " "sandboxing disabled."; } else { LOG(INFO) << "Enabling experimental Seccomp sandbox."; } } #endif // SECCOMP_SANDBOX Zygote zygote; // This function call can return multiple times, once per fork(). return zygote.ProcessRequests(); }