// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include #include #include #include "chrome/common/ipc_tests.h" #include "base/platform_thread.h" #include "base/process_util.h" #include "chrome/common/ipc_channel.h" #include "chrome/common/ipc_channel_proxy.h" #include "chrome/common/ipc_message_utils.h" #include "testing/gtest/include/gtest/gtest.h" TEST(IPCMessageIntegrity, ReadBeyondBufferStr) { //This was BUG 984408. uint32 v1 = kuint32max - 1; int v2 = 666; IPC::Message m(0, 1, IPC::Message::PRIORITY_NORMAL); EXPECT_TRUE(m.WriteInt(v1)); EXPECT_TRUE(m.WriteInt(v2)); void* iter = NULL; std::string vs; EXPECT_FALSE(m.ReadString(&iter, &vs)); } TEST(IPCMessageIntegrity, ReadBeyondBufferWStr) { //This was BUG 984408. uint32 v1 = kuint32max - 1; int v2 = 777; IPC::Message m(0, 1, IPC::Message::PRIORITY_NORMAL); EXPECT_TRUE(m.WriteInt(v1)); EXPECT_TRUE(m.WriteInt(v2)); void* iter = NULL; std::wstring vs; EXPECT_FALSE(m.ReadWString(&iter, &vs)); } TEST(IPCMessageIntegrity, ReadBytesBadIterator) { // This was BUG 1035467. IPC::Message m(0, 1, IPC::Message::PRIORITY_NORMAL); EXPECT_TRUE(m.WriteInt(1)); EXPECT_TRUE(m.WriteInt(2)); void* iter = NULL; const char* data = NULL; EXPECT_FALSE(m.ReadBytes(&iter, &data, sizeof(int))); } TEST(IPCMessageIntegrity, ReadVectorNegativeSize) { // A slight variation of BUG 984408. Note that the pickling of vector // has a specialized template which is not vulnerable to this bug. So here // try to hit the non-specialized case vector

. IPC::Message m(0, 1, IPC::Message::PRIORITY_NORMAL); EXPECT_TRUE(m.WriteInt(-1)); // This is the count of elements. EXPECT_TRUE(m.WriteInt(1)); EXPECT_TRUE(m.WriteInt(2)); EXPECT_TRUE(m.WriteInt(3)); std::vector vec; void* iter = 0; EXPECT_FALSE(ReadParam(&m, &iter, &vec)); } TEST(IPCMessageIntegrity, ReadVectorTooLarge1) { // This was BUG 1006367. This is the large but positive length case. Again // we try to hit the non-specialized case vector

. IPC::Message m(0, 1, IPC::Message::PRIORITY_NORMAL); EXPECT_TRUE(m.WriteInt(0x21000003)); // This is the count of elements. EXPECT_TRUE(m.WriteInt64(1)); EXPECT_TRUE(m.WriteInt64(2)); std::vector vec; void* iter = 0; EXPECT_FALSE(ReadParam(&m, &iter, &vec)); } TEST(IPCMessageIntegrity, ReadVectorTooLarge2) { // This was BUG 1006367. This is the large but positive with an additional // integer overflow when computing the actual byte size. Again we try to hit // the non-specialized case vector

. IPC::Message m(0, 1, IPC::Message::PRIORITY_NORMAL); EXPECT_TRUE(m.WriteInt(0x71000000)); // This is the count of elements. EXPECT_TRUE(m.WriteInt64(1)); EXPECT_TRUE(m.WriteInt64(2)); std::vector vec; void* iter = 0; EXPECT_FALSE(ReadParam(&m, &iter, &vec)); } // Typically the ipc_message_macros files is included twice but here we only // include it once in 'enum mode' because we want more control of the class // definitions. #define IPC_MESSAGE_MACROS_ENUMS #include "chrome/common/ipc_message_macros.h" enum IPCMessageIds { UNUSED_IPC_TYPE, SERVER_FIRST_IPC_TYPE, // 1st Test message tag. SERVER_SECOND_IPC_TYPE, // 2nd Test message tag. SERVER_THIRD_IPC_TYPE, // 3rd Test message tag. CLIENT_MALFORMED_IPC, // Sent to client if server detects bad message. CLIENT_UNHANDLED_IPC // Sent to client if server detects unhanded IPC. }; // Generic message class that is an int followed by a wstring. class MsgClassIS : public IPC::MessageWithTuple< Tuple2 > { public: enum { ID = SERVER_FIRST_IPC_TYPE }; MsgClassIS(const int& arg1, const std::wstring& arg2) : IPC::MessageWithTuple< Tuple2 >( MSG_ROUTING_CONTROL, ID, MakeTuple(arg1, arg2)) {} }; // Generic message class that is a wstring followed by an int. class MsgClassSI : public IPC::MessageWithTuple< Tuple2 > { public: enum { ID = SERVER_SECOND_IPC_TYPE }; MsgClassSI(const std::wstring& arg1, const int& arg2) : IPC::MessageWithTuple< Tuple2 >( MSG_ROUTING_CONTROL, ID, MakeTuple(arg1, arg2)) {} }; // Message to create a mutex in the IPC server, using the received name. class MsgDoMutex : public IPC::MessageWithTuple< Tuple2 > { public: enum { ID = SERVER_THIRD_IPC_TYPE }; MsgDoMutex(const std::wstring& mutex_name, const int& unused) : IPC::MessageWithTuple< Tuple2 >( MSG_ROUTING_CONTROL, ID, MakeTuple(mutex_name, unused)) {} }; class SimpleListener : public IPC::Channel::Listener { public: SimpleListener() : other_(NULL) { } void Init(IPC::Message::Sender* s) { other_ = s; } protected: IPC::Message::Sender* other_; }; enum { FUZZER_ROUTING_ID = 5 }; // The fuzzer server class. It runs in a child process and expects // only two IPC calls; after that it exits the message loop which // terminates the child process. class FuzzerServerListener : public SimpleListener { public: FuzzerServerListener() : message_count_(2), pending_messages_(0) { } virtual void OnMessageReceived(const IPC::Message& msg) { if (msg.routing_id() == MSG_ROUTING_CONTROL) { ++pending_messages_; IPC_BEGIN_MESSAGE_MAP(FuzzerServerListener, msg) IPC_MESSAGE_HANDLER(MsgClassIS, OnMsgClassISMessage) IPC_MESSAGE_HANDLER(MsgClassSI, OnMsgClassSIMessage) IPC_END_MESSAGE_MAP() if (pending_messages_) { // Probably a problem de-serializing the message. ReplyMsgNotHandled(msg.type()); } } } private: void OnMsgClassISMessage(int value, const std::wstring& text) { UseData(MsgClassIS::ID, value, text); RoundtripAckReply(FUZZER_ROUTING_ID, MsgClassIS::ID, value); Cleanup(); } void OnMsgClassSIMessage(const std::wstring& text, int value) { UseData(MsgClassSI::ID, value, text); RoundtripAckReply(FUZZER_ROUTING_ID, MsgClassSI::ID, value); Cleanup(); } bool RoundtripAckReply(int routing, int type_id, int reply) { IPC::Message* message = new IPC::Message(routing, type_id, IPC::Message::PRIORITY_NORMAL); message->WriteInt(reply + 1); message->WriteInt(reply); return other_->Send(message); } void Cleanup() { --message_count_; --pending_messages_; if (0 == message_count_) MessageLoop::current()->Quit(); } void ReplyMsgNotHandled(int type_id) { RoundtripAckReply(FUZZER_ROUTING_ID, CLIENT_UNHANDLED_IPC, type_id); Cleanup(); } void UseData(int caller, int value, const std::wstring& text) { std::wostringstream wos; wos << L"IPC fuzzer:" << caller << " [" << value << L" " << text << L"]\n"; std::wstring output = wos.str(); LOG(WARNING) << output.c_str(); }; int message_count_; int pending_messages_; }; class FuzzerClientListener : public SimpleListener { public: FuzzerClientListener() : last_msg_(NULL) { } virtual void OnMessageReceived(const IPC::Message& msg) { last_msg_ = new IPC::Message(msg); MessageLoop::current()->Quit(); } bool ExpectMessage(int value, int type_id) { if (!MsgHandlerInternal(type_id)) return false; int msg_value1 = 0; int msg_value2 = 0; void* iter = NULL; if (!last_msg_->ReadInt(&iter, &msg_value1)) return false; if (!last_msg_->ReadInt(&iter, &msg_value2)) return false; if ((msg_value2 + 1) != msg_value1) return false; if (msg_value2 != value) return false; delete last_msg_; last_msg_ = NULL; return true; } bool ExpectMsgNotHandled(int type_id) { return ExpectMessage(type_id, CLIENT_UNHANDLED_IPC); } private: bool MsgHandlerInternal(int type_id) { MessageLoop::current()->Run(); if (NULL == last_msg_) return false; if (FUZZER_ROUTING_ID != last_msg_->routing_id()) return false; return (type_id == last_msg_->type()); }; IPC::Message* last_msg_; }; bool RunFuzzServer() { FuzzerServerListener listener; IPC::Channel chan(kFuzzerChannel, IPC::Channel::MODE_SERVER, &listener); chan.Connect(); listener.Init(&chan); MessageLoop::current()->Run(); return true; } // This test makes sure that the FuzzerClientListener and FuzzerServerListener // are working properly by generating two well formed IPC calls. TEST(IPCFuzzingTest, SanityTest) { base::ProcessHandle server_process = SpawnChild(FUZZER_SERVER); ASSERT_TRUE(server_process); PlatformThread::Sleep(1000); FuzzerClientListener listener; IPC::Channel chan(kFuzzerChannel, IPC::Channel::MODE_CLIENT, &listener); ASSERT_TRUE(chan.Connect()); listener.Init(&chan); IPC::Message* msg = NULL; int value = 43; msg = new MsgClassIS(value, L"expect 43"); chan.Send(msg); EXPECT_TRUE(listener.ExpectMessage(value, MsgClassIS::ID)); msg = new MsgClassSI(L"expect 44", ++value); chan.Send(msg); EXPECT_TRUE(listener.ExpectMessage(value, MsgClassSI::ID)); EXPECT_TRUE(base::WaitForSingleProcess(server_process, 5000)); } // This test uses a payload that is smaller than expected. // This generates an error while unpacking the IPC buffer which in // In debug this triggers an assertion and in release it is ignored(!!). Right // after we generate another valid IPC to make sure framing is working // properly. #ifdef NDEBUG TEST(IPCFuzzingTest, MsgBadPayloadShort) { base::ProcessHandle server_process = SpawnChild(FUZZER_SERVER); ASSERT_TRUE(server_process); ::Sleep(1000); FuzzerClientListener listener; IPC::Channel chan(kFuzzerChannel, IPC::Channel::MODE_CLIENT, &listener); ASSERT_TRUE(chan.Connect()); listener.Init(&chan); IPC::Message* msg = new IPC::Message(MSG_ROUTING_CONTROL, MsgClassIS::ID, IPC::Message::PRIORITY_NORMAL); msg->WriteInt(666); chan.Send(msg); EXPECT_TRUE(listener.ExpectMsgNotHandled(MsgClassIS::ID)); msg = new MsgClassSI(L"expect one", 1); chan.Send(msg); EXPECT_TRUE(listener.ExpectMessage(1, MsgClassSI::ID)); ASSERT_EQ(WAIT_OBJECT_0, ::WaitForSingleObject(server_process, 5000)); } #endif // NDEBUG // This test uses a payload that has the wrong arguments, but so the payload // size is big enough so the unpacking routine does not generate an error as // in the case of MsgBadPayloadShort test. // This test does not pinpoint a flaw (per se) as by design we don't carry // type information on the IPC message. TEST(IPCFuzzingTest, MsgBadPayloadArgs) { base::ProcessHandle server_process = SpawnChild(FUZZER_SERVER); ASSERT_TRUE(server_process); PlatformThread::Sleep(1000); FuzzerClientListener listener; IPC::Channel chan(kFuzzerChannel, IPC::Channel::MODE_CLIENT, &listener); ASSERT_TRUE(chan.Connect()); listener.Init(&chan); IPC::Message* msg = new IPC::Message(MSG_ROUTING_CONTROL, MsgClassSI::ID, IPC::Message::PRIORITY_NORMAL); msg->WriteInt(2); msg->WriteInt(0x64); msg->WriteInt(0); msg->WriteInt(0x65); chan.Send(msg); EXPECT_TRUE(listener.ExpectMessage(0, MsgClassSI::ID)); msg = new MsgClassIS(3, L"expect three"); chan.Send(msg); EXPECT_TRUE(listener.ExpectMessage(3, MsgClassIS::ID)); EXPECT_TRUE(base::WaitForSingleProcess(server_process, 5000)); } // This class is for testing the IPC_BEGIN_MESSAGE_MAP_EX macros. class ServerMacroExTest { public: ServerMacroExTest() : unhandled_msgs_(0) { } virtual bool OnMessageReceived(const IPC::Message& msg) { bool msg_is_ok = false; IPC_BEGIN_MESSAGE_MAP_EX(ServerMacroExTest, msg, msg_is_ok) IPC_MESSAGE_HANDLER(MsgClassIS, OnMsgClassISMessage) IPC_MESSAGE_HANDLER(MsgClassSI, OnMsgClassSIMessage) IPC_MESSAGE_UNHANDLED(++unhandled_msgs_) IPC_END_MESSAGE_MAP_EX() return msg_is_ok; } int unhandled_msgs() const { return unhandled_msgs_; } private: void OnMsgClassISMessage(int value, const std::wstring& text) { } void OnMsgClassSIMessage(const std::wstring& text, int value) { } int unhandled_msgs_; }; TEST(IPCFuzzingTest, MsgMapExMacro) { IPC::Message* msg = NULL; ServerMacroExTest server; // Test the regular messages. msg = new MsgClassIS(3, L"text3"); EXPECT_TRUE(server.OnMessageReceived(*msg)); delete msg; msg = new MsgClassSI(L"text2", 2); EXPECT_TRUE(server.OnMessageReceived(*msg)); delete msg; #ifdef NDEBUG // Test a bad message. msg = new IPC::Message(MSG_ROUTING_CONTROL, MsgClassSI::ID, IPC::Message::PRIORITY_NORMAL); msg->WriteInt(2); EXPECT_FALSE(server.OnMessageReceived(*msg)); delete msg; msg = new IPC::Message(MSG_ROUTING_CONTROL, MsgClassIS::ID, IPC::Message::PRIORITY_NORMAL); msg->WriteInt(0x64); msg->WriteInt(0x32); EXPECT_FALSE(server.OnMessageReceived(*msg)); delete msg; EXPECT_EQ(0, server.unhandled_msgs()); #endif }