// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // A mini-zygote specifically for Native Client. #include "chrome/common/nacl_helper_linux.h" #include #include #include #include #include #include #include #include "base/at_exit.h" #include "base/command_line.h" #include "base/eintr_wrapper.h" #include "base/logging.h" #include "base/message_loop.h" #include "base/rand_util.h" #include "chrome/nacl/nacl_listener.h" #include "content/common/unix_domain_socket_posix.h" #include "crypto/nss_util.h" #include "ipc/ipc_switches.h" #include "native_client/src/trusted/service_runtime/sel_memory.h" namespace { bool g_suid_sandbox_active; // The child must mimic the behavior of zygote_main_linux.cc on the child // side of the fork. See zygote_main_linux.cc:HandleForkRequest from // if (!child) { // Note: this code doesn't attempt to support SELINUX or the SECCOMP sandbox. void BecomeNaClLoader(const std::vector& child_fds) { VLOG(1) << "NaCl loader: setting up IPC descriptor"; // don't need zygote FD any more if (HANDLE_EINTR(close(kNaClZygoteDescriptor)) != 0) LOG(ERROR) << "close(kNaClZygoteDescriptor) failed."; // Set up browser descriptor as expected by Chrome on fd 3 // The zygote takes care of putting the sandbox IPC channel on fd 5 int zfd = dup2(child_fds[kNaClBrowserFDIndex], kNaClBrowserDescriptor); if (zfd != kNaClBrowserDescriptor) { LOG(ERROR) << "Could not initialize kNaClBrowserDescriptor"; _exit(-1); } MessageLoopForIO main_message_loop; NaClListener listener; listener.Listen(); _exit(0); } // Some of this code was lifted from // content/browser/zygote_main_linux.cc:ForkWithRealPid() void HandleForkRequest(const std::vector& child_fds) { VLOG(1) << "nacl_helper: forking"; pid_t childpid = fork(); if (childpid < 0) { perror("fork"); LOG(ERROR) << "*** HandleForkRequest failed\n"; // fall through to parent case below } else if (childpid == 0) { // In the child process. bool validack = false; const size_t kMaxReadSize = 1024; char buffer[kMaxReadSize]; // Wait until the parent process has discovered our PID. We // should not fork any child processes (which the seccomp // sandbox does) until then, because that can interfere with the // parent's discovery of our PID. const int nread = HANDLE_EINTR(read(child_fds[kNaClParentFDIndex], buffer, kMaxReadSize)); const std::string switch_prefix = std::string("--") + switches::kProcessChannelID + std::string("="); const size_t len = switch_prefix.length(); if (nread < 0) { perror("read"); LOG(ERROR) << "read returned " << nread; } else if (nread > static_cast(len)) { if (switch_prefix.compare(0, len, buffer, 0, len) == 0) { VLOG(1) << "NaCl loader is synchronised with Chrome zygote"; CommandLine::ForCurrentProcess()->AppendSwitchASCII( switches::kProcessChannelID, std::string(&buffer[len], nread - len)); validack = true; } } if (HANDLE_EINTR(close(child_fds[kNaClDummyFDIndex])) != 0) LOG(ERROR) << "close(child_fds[kNaClDummyFDIndex]) failed"; if (HANDLE_EINTR(close(child_fds[kNaClParentFDIndex])) != 0) LOG(ERROR) << "close(child_fds[kNaClParentFDIndex]) failed"; if (validack) { BecomeNaClLoader(child_fds); } else { LOG(ERROR) << "Failed to synch with zygote"; } // NOTREACHED return; } // I am the parent. // First, close the dummy_fd so the sandbox won't find me when // looking for the child's pid in /proc. Also close other fds. for (size_t i = 0; i < child_fds.size(); i++) { if (HANDLE_EINTR(close(child_fds[i])) != 0) LOG(ERROR) << "close(child_fds[i]) failed"; } VLOG(1) << "nacl_helper: childpid is " << childpid; // Now tell childpid to the Chrome zygote. if (HANDLE_EINTR(send(kNaClZygoteDescriptor, &childpid, sizeof(childpid), MSG_EOR)) != sizeof(childpid)) { LOG(ERROR) << "*** send() to zygote failed"; } } } // namespace static const char kNaClHelperAtZero[] = "at-zero"; static const char kNaClHelperRDebug[] = "r_debug"; /* * Since we were started by the bootstrap program rather than in the * usual way, the debugger cannot figure out where our executable * or the dynamic linker or the shared libraries are in memory, * so it won't find any symbols. But we can fake it out to find us. * * The zygote passes --r_debug=0xXXXXXXXXXXXXXXXX. The bootstrap * program replaces the Xs with the address of its _r_debug * structure. The debugger will look for that symbol by name to * discover the addresses of key dynamic linker data structures. * Since all it knows about is the original main executable, which * is the bootstrap program, it finds the symbol defined there. The * dynamic linker's structure is somewhere else, but it is filled in * after initialization. The parts that really matter to the * debugger never change. So we just copy the contents of the * dynamic linker's structure into the address provided by the option. * Hereafter, if someone attaches a debugger (or examines a core dump), * the debugger will find all the symbols in the normal way. */ static void check_r_debug(char *argv0) { std::string r_debug_switch_value = CommandLine::ForCurrentProcess()->GetSwitchValueASCII(kNaClHelperRDebug); if (!r_debug_switch_value.empty()) { char *endp = NULL; uintptr_t r_debug_addr = strtoul(r_debug_switch_value.c_str(), &endp, 0); if (r_debug_addr != 0 && *endp == '\0') { struct r_debug *bootstrap_r_debug = (struct r_debug *) r_debug_addr; *bootstrap_r_debug = _r_debug; /* * Since the main executable (the bootstrap program) does not * have a dynamic section, the debugger will not skip the * first element of the link_map list as it usually would for * an executable or PIE that was loaded normally. But the * dynamic linker has set l_name for the PIE to "" as is * normal for the main executable. So the debugger doesn't * know which file it is. Fill in the actual file name, which * came in as our argv[0]. */ struct link_map *l = _r_debug.r_map; if (l->l_name[0] == '\0') l->l_name = argv0; } } } int main(int argc, char *argv[]) { CommandLine::Init(argc, argv); base::AtExitManager exit_manager; base::RandUint64(); // acquire /dev/urandom fd before sandbox is raised #if defined(USE_NSS) // Configure NSS for use inside the NaCl process. // The fork check has not caused problems for NaCl, but this appears to be // best practice (see other places LoadNSSLibraries is called.) crypto::DisableNSSForkCheck(); // Without this line on Linux, HMAC::Init will instantiate a singleton that // in turn attempts to open a file. Disabling this behavior avoids a ~70 ms // stall the first time HMAC is used. crypto::ForceNSSNoDBInit(); // Load shared libraries before sandbox is raised. // NSS is needed to perform hashing for validation caching. crypto::LoadNSSLibraries(); #endif std::vector empty; // for SendMsg() calls check_r_debug(argv[0]); g_suid_sandbox_active = (NULL != getenv("SBX_D")); if (CommandLine::ForCurrentProcess()->HasSwitch(kNaClHelperAtZero)) { g_nacl_prereserved_sandbox_addr = (void *) (uintptr_t) 0x10000; } // Send the zygote a message to let it know we are ready to help if (!UnixDomainSocket::SendMsg(kNaClZygoteDescriptor, kNaClHelperStartupAck, sizeof(kNaClHelperStartupAck), empty)) { LOG(ERROR) << "*** send() to zygote failed"; } while (true) { int badpid = -1; std::vector fds; static const unsigned kMaxMessageLength = 2048; char buf[kMaxMessageLength]; const ssize_t msglen = UnixDomainSocket::RecvMsg(kNaClZygoteDescriptor, &buf, sizeof(buf), &fds); if (msglen == 0 || (msglen == -1 && errno == ECONNRESET)) { // EOF from the browser. Goodbye! _exit(0); } if (msglen == sizeof(kNaClForkRequest) - 1 && memcmp(buf, kNaClForkRequest, msglen) == 0) { if (kNaClParentFDIndex + 1 == fds.size()) { HandleForkRequest(fds); continue; // fork succeeded. Note: child does not return } else { LOG(ERROR) << "nacl_helper: unexpected number of fds, got " << fds.size(); } } else { if (msglen != 0) { LOG(ERROR) << "nacl_helper unrecognized request: %s"; _exit(-1); } } // if fork fails, send PID=-1 to zygote if (!UnixDomainSocket::SendMsg(kNaClZygoteDescriptor, &badpid, sizeof(badpid), empty)) { LOG(ERROR) << "*** send() to zygote failed"; } } CHECK(false); // This routine must not return }