// Copyright (c) 2009 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/logging.h" #include "base/process_util.h" #include "chrome/common/gpu_messages.h" #include "chrome/common/plugin_messages.h" #include "chrome/renderer/command_buffer_proxy.h" #include "chrome/renderer/plugin_channel_host.h" #include "gpu/command_buffer/common/cmd_buffer_common.h" using gpu::Buffer; CommandBufferProxy::CommandBufferProxy( IPC::Channel::Sender* channel, int route_id) : size_(0), channel_(channel), route_id_(route_id) { } CommandBufferProxy::~CommandBufferProxy() { // Delete all the locally cached shared memory objects, closing the handle // in this process. for (TransferBufferMap::iterator it = transfer_buffers_.begin(); it != transfer_buffers_.end(); ++it) { delete it->second.shared_memory; it->second.shared_memory = NULL; } } void CommandBufferProxy::OnMessageReceived(const IPC::Message& message) { IPC_BEGIN_MESSAGE_MAP(CommandBufferProxy, message) IPC_MESSAGE_HANDLER(GpuCommandBufferMsg_UpdateState, OnUpdateState); IPC_MESSAGE_HANDLER(GpuCommandBufferMsg_NotifyRepaint, OnNotifyRepaint); IPC_MESSAGE_UNHANDLED_ERROR() IPC_END_MESSAGE_MAP() } void CommandBufferProxy::OnChannelError() { // Prevent any further messages from being sent. channel_ = NULL; // When the client sees that the context is lost, they should delete this // CommandBufferProxy and create a new one. last_state_.error = gpu::error::kLostContext; } bool CommandBufferProxy::Send(IPC::Message* msg) { if (channel_) return channel_->Send(msg); // Callee takes ownership of message, regardless of whether Send is // successful. See IPC::Message::Sender. delete msg; return false; } bool CommandBufferProxy::Initialize(int32 size) { DCHECK(!ring_buffer_.get()); // Initialize the service. Assuming we are sandboxed, the GPU // process is responsible for duplicating the handle. This might not be true // for NaCl. base::SharedMemoryHandle handle; if (Send(new GpuCommandBufferMsg_Initialize(route_id_, size, &handle)) && base::SharedMemory::IsHandleValid(handle)) { ring_buffer_.reset(new base::SharedMemory(handle, false)); if (ring_buffer_->Map(size * sizeof(int32))) { size_ = size; return true; } ring_buffer_.reset(); } return false; } Buffer CommandBufferProxy::GetRingBuffer() { // Return locally cached ring buffer. Buffer buffer; buffer.ptr = ring_buffer_->memory(); buffer.size = size_ * sizeof(gpu::CommandBufferEntry); buffer.shared_memory = ring_buffer_.get(); return buffer; } gpu::CommandBuffer::State CommandBufferProxy::GetState() { Send(new GpuCommandBufferMsg_GetState(route_id_, &last_state_)); return last_state_; } gpu::CommandBuffer::State CommandBufferProxy::Flush(int32 put_offset) { Send(new GpuCommandBufferMsg_Flush(route_id_, put_offset, &last_state_)); return last_state_; } void CommandBufferProxy::SetGetOffset(int32 get_offset) { // Not implemented in proxy. NOTREACHED(); } int32 CommandBufferProxy::CreateTransferBuffer(size_t size) { int32 id; if (Send(new GpuCommandBufferMsg_CreateTransferBuffer(route_id_, size, &id))) return id; return -1; } void CommandBufferProxy::DestroyTransferBuffer(int32 id) { // Remove the transfer buffer from the client side4 cache. TransferBufferMap::iterator it = transfer_buffers_.find(id); DCHECK(it != transfer_buffers_.end()); // Delete the shared memory object, closing the handle in this process. delete it->second.shared_memory; transfer_buffers_.erase(it); Send(new GpuCommandBufferMsg_DestroyTransferBuffer(route_id_, id)); } Buffer CommandBufferProxy::GetTransferBuffer(int32 id) { // Check local cache to see if there is already a client side shared memory // object for this id. TransferBufferMap::iterator it = transfer_buffers_.find(id); if (it != transfer_buffers_.end()) { return it->second; } // Assuming we are in the renderer process, the service is responsible for // duplicating the handle. This might not be true for NaCl. base::SharedMemoryHandle handle; uint32 size; if (!Send(new GpuCommandBufferMsg_GetTransferBuffer(route_id_, id, &handle, &size))) { return Buffer(); } // Cache the transfer buffer shared memory object client side. base::SharedMemory* shared_memory = new base::SharedMemory(handle, false); // Map the shared memory on demand. if (!shared_memory->memory()) { if (!shared_memory->Map(size)) { delete shared_memory; return Buffer(); } } Buffer buffer; buffer.ptr = shared_memory->memory(); buffer.size = size; buffer.shared_memory = shared_memory; transfer_buffers_[id] = buffer; return buffer; } void CommandBufferProxy::SetToken(int32 token) { // Not implemented in proxy. NOTREACHED(); } void CommandBufferProxy::OnNotifyRepaint() { if (notify_repaint_task_.get()) MessageLoop::current()->PostNonNestableTask( FROM_HERE, notify_repaint_task_.release()); } void CommandBufferProxy::SetParseError( gpu::error::Error error) { // Not implemented in proxy. NOTREACHED(); } void CommandBufferProxy::ResizeOffscreenFrameBuffer(const gfx::Size& size) { IPC::Message* message = new GpuCommandBufferMsg_ResizeOffscreenFrameBuffer(route_id_, size); // We need to set the unblock flag on this message to guarantee the // order in which it is processed in the GPU process. Ordinarily in // certain situations, namely if a synchronous message is being // processed, other synchronous messages may be processed before // asynchronous messages. During some page reloads WebGL seems to // send three messages (sync, async, sync) in rapid succession in // that order, and the sync message (GpuCommandBufferMsg_Flush, on // behalf of SwapBuffers) is sometimes processed before the async // message (GpuCommandBufferMsg_ResizeOffscreenFrameBuffer). This // causes the WebGL content to disappear because the back buffer is // not correctly resized. message->set_unblock(true); Send(message); } #if defined(OS_MACOSX) void CommandBufferProxy::SetWindowSize(const gfx::Size& size) { Send(new GpuCommandBufferMsg_SetWindowSize(route_id_, size)); } #endif void CommandBufferProxy::AsyncGetState(Task* completion_task) { IPC::Message* message = new GpuCommandBufferMsg_AsyncGetState(route_id_); // Do not let a synchronous flush hold up this message. If this handler is // deferred until after the synchronous flush completes, it will overwrite the // cached last_state_ with out-of-date data. message->set_unblock(true); if (Send(message)) pending_async_flush_tasks_.push(linked_ptr(completion_task)); } void CommandBufferProxy::AsyncFlush(int32 put_offset, Task* completion_task) { IPC::Message* message = new GpuCommandBufferMsg_AsyncFlush(route_id_, put_offset); // Do not let a synchronous flush hold up this message. If this handler is // deferred until after the synchronous flush completes, it will overwrite the // cached last_state_ with out-of-date data. message->set_unblock(true); if (Send(message)) pending_async_flush_tasks_.push(linked_ptr(completion_task)); } void CommandBufferProxy::OnUpdateState(gpu::CommandBuffer::State state) { last_state_ = state; linked_ptr task = pending_async_flush_tasks_.front(); pending_async_flush_tasks_.pop(); if (task.get()) { // Although we need need to update last_state_ while potentially waiting // for a synchronous flush to complete, we do not need to invoke the // callback synchonously. Also, post it as a non nestable task so it is // always invoked by the outermost message loop. MessageLoop::current()->PostNonNestableTask(FROM_HERE, task.release()); } }