// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "components/crash/browser/crash_handler_host_linux.h" #include #include #include #include #include #include "base/bind.h" #include "base/bind_helpers.h" #include "base/files/file_path.h" #include "base/files/file_util.h" #include "base/files/scoped_file.h" #include "base/format_macros.h" #include "base/linux_util.h" #include "base/logging.h" #include "base/message_loop/message_loop.h" #include "base/path_service.h" #include "base/posix/eintr_wrapper.h" #include "base/rand_util.h" #include "base/strings/string_util.h" #include "base/strings/stringprintf.h" #include "base/threading/thread.h" #include "breakpad/src/client/linux/handler/exception_handler.h" #include "breakpad/src/client/linux/minidump_writer/linux_dumper.h" #include "breakpad/src/client/linux/minidump_writer/minidump_writer.h" #include "components/crash/app/breakpad_linux_impl.h" #include "content/public/browser/browser_thread.h" #if defined(OS_ANDROID) && !defined(__LP64__) #include #define SYS_read __NR_read #endif using content::BrowserThread; using google_breakpad::ExceptionHandler; namespace breakpad { namespace { const size_t kNumFDs = 1; // The length of the control message: const size_t kControlMsgSize = CMSG_SPACE(kNumFDs * sizeof(int)) + CMSG_SPACE(sizeof(struct ucred)); // The length of the regular payload: const size_t kCrashContextSize = sizeof(ExceptionHandler::CrashContext); // Handles the crash dump and frees the allocated BreakpadInfo struct. void CrashDumpTask(CrashHandlerHostLinux* handler, scoped_ptr info) { if (handler->IsShuttingDown() && info->upload) { base::DeleteFile(base::FilePath(info->filename), false); #if defined(ADDRESS_SANITIZER) base::DeleteFile(base::FilePath(info->log_filename), false); #endif return; } HandleCrashDump(*info); delete[] info->filename; #if defined(ADDRESS_SANITIZER) delete[] info->log_filename; delete[] info->asan_report_str; #endif delete[] info->process_type; delete[] info->distro; delete info->crash_keys; } } // namespace // Since instances of CrashHandlerHostLinux are leaked, they are only destroyed // at the end of the processes lifetime, which is greater in span than the // lifetime of the IO message loop. Thus, all calls to base::Bind() use // non-refcounted pointers. CrashHandlerHostLinux::CrashHandlerHostLinux(const std::string& process_type, const base::FilePath& dumps_path, bool upload) : process_type_(process_type), dumps_path_(dumps_path), upload_(upload), shutting_down_(false), worker_pool_token_(BrowserThread::GetBlockingPool()->GetSequenceToken()) { int fds[2]; // We use SOCK_SEQPACKET rather than SOCK_DGRAM to prevent the process from // sending datagrams to other sockets on the system. The sandbox may prevent // the process from calling socket() to create new sockets, but it'll still // inherit some sockets. With PF_UNIX+SOCK_DGRAM, it can call sendmsg to send // a datagram to any (abstract) socket on the same system. With // SOCK_SEQPACKET, this is prevented. CHECK_EQ(0, socketpair(AF_UNIX, SOCK_SEQPACKET, 0, fds)); static const int on = 1; // Enable passcred on the server end of the socket CHECK_EQ(0, setsockopt(fds[1], SOL_SOCKET, SO_PASSCRED, &on, sizeof(on))); process_socket_ = fds[0]; browser_socket_ = fds[1]; BrowserThread::PostTask( BrowserThread::IO, FROM_HERE, base::Bind(&CrashHandlerHostLinux::Init, base::Unretained(this))); } CrashHandlerHostLinux::~CrashHandlerHostLinux() { close(process_socket_); close(browser_socket_); } void CrashHandlerHostLinux::StartUploaderThread() { uploader_thread_.reset( new base::Thread(process_type_ + "_crash_uploader")); uploader_thread_->Start(); } void CrashHandlerHostLinux::Init() { base::MessageLoopForIO* ml = base::MessageLoopForIO::current(); CHECK(ml->WatchFileDescriptor( browser_socket_, true /* persistent */, base::MessageLoopForIO::WATCH_READ, &file_descriptor_watcher_, this)); ml->AddDestructionObserver(this); } void CrashHandlerHostLinux::OnFileCanWriteWithoutBlocking(int fd) { NOTREACHED(); } void CrashHandlerHostLinux::OnFileCanReadWithoutBlocking(int fd) { DCHECK_EQ(browser_socket_, fd); // A process has crashed and has signaled us by writing a datagram // to the death signal socket. The datagram contains the crash context needed // for writing the minidump as well as a file descriptor and a credentials // block so that they can't lie about their pid. // // The message sender is in components/crash/app/breakpad_linux.cc. struct msghdr msg = {0}; struct iovec iov[kCrashIovSize]; scoped_ptr crash_context(new char[kCrashContextSize]); #if defined(ADDRESS_SANITIZER) scoped_ptr asan_report(new char[kMaxAsanReportSize + 1]); #endif scoped_ptr crash_keys(new CrashKeyStorage); google_breakpad::SerializedNonAllocatingMap* serialized_crash_keys; size_t crash_keys_size = crash_keys->Serialize( const_cast( &serialized_crash_keys)); char* tid_buf_addr = NULL; int tid_fd = -1; uint64_t uptime; size_t oom_size; char control[kControlMsgSize]; const ssize_t expected_msg_size = kCrashContextSize + sizeof(tid_buf_addr) + sizeof(tid_fd) + sizeof(uptime) + #if defined(ADDRESS_SANITIZER) kMaxAsanReportSize + 1 + #endif sizeof(oom_size) + crash_keys_size; iov[0].iov_base = crash_context.get(); iov[0].iov_len = kCrashContextSize; iov[1].iov_base = &tid_buf_addr; iov[1].iov_len = sizeof(tid_buf_addr); iov[2].iov_base = &tid_fd; iov[2].iov_len = sizeof(tid_fd); iov[3].iov_base = &uptime; iov[3].iov_len = sizeof(uptime); iov[4].iov_base = &oom_size; iov[4].iov_len = sizeof(oom_size); iov[5].iov_base = serialized_crash_keys; iov[5].iov_len = crash_keys_size; #if !defined(ADDRESS_SANITIZER) static_assert(5 == kCrashIovSize - 1, "kCrashIovSize should equal 6"); #else iov[6].iov_base = asan_report.get(); iov[6].iov_len = kMaxAsanReportSize + 1; static_assert(6 == kCrashIovSize - 1, "kCrashIovSize should equal 7"); #endif msg.msg_iov = iov; msg.msg_iovlen = kCrashIovSize; msg.msg_control = control; msg.msg_controllen = kControlMsgSize; const ssize_t msg_size = HANDLE_EINTR(recvmsg(browser_socket_, &msg, 0)); if (msg_size < 0) { LOG(ERROR) << "Error reading from death signal socket. Crash dumping" << " is disabled." << " msg_size:" << msg_size << " errno:" << errno; file_descriptor_watcher_.StopWatchingFileDescriptor(); return; } const bool bad_message = (msg_size != expected_msg_size || msg.msg_controllen != kControlMsgSize || msg.msg_flags & ~MSG_TRUNC); base::ScopedFD signal_fd; pid_t crashing_pid = -1; if (msg.msg_controllen > 0) { // Walk the control payload and extract the file descriptor and // validated pid. for (struct cmsghdr *hdr = CMSG_FIRSTHDR(&msg); hdr; hdr = CMSG_NXTHDR(&msg, hdr)) { if (hdr->cmsg_level != SOL_SOCKET) continue; if (hdr->cmsg_type == SCM_RIGHTS) { const size_t len = hdr->cmsg_len - (((uint8_t*)CMSG_DATA(hdr)) - (uint8_t*)hdr); DCHECK_EQ(0U, len % sizeof(int)); const size_t num_fds = len / sizeof(int); if (num_fds != kNumFDs) { // A nasty process could try and send us too many descriptors and // force a leak. LOG(ERROR) << "Death signal contained wrong number of descriptors;" << " num_fds:" << num_fds; for (size_t i = 0; i < num_fds; ++i) close(reinterpret_cast(CMSG_DATA(hdr))[i]); return; } DCHECK(!signal_fd.is_valid()); int fd = reinterpret_cast(CMSG_DATA(hdr))[0]; DCHECK_GE(fd, 0); // The kernel should never send a negative fd. signal_fd.reset(fd); } else if (hdr->cmsg_type == SCM_CREDENTIALS) { DCHECK_EQ(-1, crashing_pid); const struct ucred *cred = reinterpret_cast(CMSG_DATA(hdr)); crashing_pid = cred->pid; } } } if (bad_message) { LOG(ERROR) << "Received death signal message with the wrong size;" << " msg.msg_controllen:" << msg.msg_controllen << " msg.msg_flags:" << msg.msg_flags << " kCrashContextSize:" << kCrashContextSize << " kControlMsgSize:" << kControlMsgSize; return; } if (crashing_pid == -1 || !signal_fd.is_valid()) { LOG(ERROR) << "Death signal message didn't contain all expected control" << " messages"; return; } // The crashing TID set inside the compromised context via // sys_gettid() in ExceptionHandler::HandleSignal might be wrong (if // the kernel supports PID namespacing) and may need to be // translated. // // We expect the crashing thread to be in sys_read(), waiting for us to // write to |signal_fd|. Most newer kernels where we have the different pid // namespaces also have /proc/[pid]/syscall, so we can look through // |actual_crashing_pid|'s thread group and find the thread that's in the // read syscall with the right arguments. std::string expected_syscall_data; // /proc/[pid]/syscall is formatted as follows: // syscall_number arg1 ... arg6 sp pc // but we just check syscall_number through arg3. base::StringAppendF(&expected_syscall_data, "%d 0x%x %p 0x1 ", SYS_read, tid_fd, tid_buf_addr); bool syscall_supported = false; pid_t crashing_tid = base::FindThreadIDWithSyscall(crashing_pid, expected_syscall_data, &syscall_supported); if (crashing_tid == -1) { // We didn't find the thread we want. Maybe it didn't reach // sys_read() yet or the thread went away. We'll just take a // guess here and assume the crashing thread is the thread group // leader. If procfs syscall is not supported by the kernel, then // we assume the kernel also does not support TID namespacing and // trust the TID passed by the crashing process. LOG(WARNING) << "Could not translate tid - assuming crashing thread is " "thread group leader; syscall_supported=" << syscall_supported; crashing_tid = crashing_pid; } ExceptionHandler::CrashContext* bad_context = reinterpret_cast(crash_context.get()); bad_context->tid = crashing_tid; scoped_ptr info(new BreakpadInfo); info->fd = -1; info->process_type_length = process_type_.length(); // Freed in CrashDumpTask(). char* process_type_str = new char[info->process_type_length + 1]; process_type_.copy(process_type_str, info->process_type_length); process_type_str[info->process_type_length] = '\0'; info->process_type = process_type_str; // Memory released from scoped_ptrs below are also freed in CrashDumpTask(). info->crash_keys = crash_keys.release(); #if defined(ADDRESS_SANITIZER) asan_report[kMaxAsanReportSize] = '\0'; info->asan_report_str = asan_report.release(); info->asan_report_length = strlen(info->asan_report_str); #endif info->process_start_time = uptime; info->oom_size = oom_size; #if defined(OS_ANDROID) // Nothing gets uploaded in android. info->upload = false; #else info->upload = upload_; #endif BrowserThread::GetBlockingPool()->PostSequencedWorkerTask( worker_pool_token_, FROM_HERE, base::Bind(&CrashHandlerHostLinux::WriteDumpFile, base::Unretained(this), base::Passed(&info), base::Passed(&crash_context), crashing_pid, signal_fd.release())); } void CrashHandlerHostLinux::WriteDumpFile(scoped_ptr info, scoped_ptr crash_context, pid_t crashing_pid, int signal_fd) { DCHECK(BrowserThread::GetBlockingPool()->IsRunningSequenceOnCurrentThread( worker_pool_token_)); // Set |info->distro| here because base::GetLinuxDistro() needs to run on a // blocking thread. std::string distro = base::GetLinuxDistro(); info->distro_length = distro.length(); // Freed in CrashDumpTask(). char* distro_str = new char[info->distro_length + 1]; distro.copy(distro_str, info->distro_length); distro_str[info->distro_length] = '\0'; info->distro = distro_str; base::FilePath dumps_path("/tmp"); PathService::Get(base::DIR_TEMP, &dumps_path); if (!info->upload) dumps_path = dumps_path_; const std::string minidump_filename = base::StringPrintf("%s/chromium-%s-minidump-%016" PRIx64 ".dmp", dumps_path.value().c_str(), process_type_.c_str(), base::RandUint64()); if (!google_breakpad::WriteMinidump(minidump_filename.c_str(), kMaxMinidumpFileSize, crashing_pid, crash_context.get(), kCrashContextSize, google_breakpad::MappingList(), google_breakpad::AppMemoryList())) { LOG(ERROR) << "Failed to write crash dump for pid " << crashing_pid; } #if defined(ADDRESS_SANITIZER) // Create a temporary file holding the AddressSanitizer report. const base::FilePath log_path = base::FilePath(minidump_filename).ReplaceExtension("log"); base::WriteFile(log_path, info->asan_report_str, info->asan_report_length); #endif // Freed in CrashDumpTask(). char* minidump_filename_str = new char[minidump_filename.length() + 1]; minidump_filename.copy(minidump_filename_str, minidump_filename.length()); minidump_filename_str[minidump_filename.length()] = '\0'; info->filename = minidump_filename_str; #if defined(ADDRESS_SANITIZER) // Freed in CrashDumpTask(). char* minidump_log_filename_str = new char[minidump_filename.length() + 1]; minidump_filename.copy(minidump_log_filename_str, minidump_filename.length()); memcpy(minidump_log_filename_str + minidump_filename.length() - 3, "log", 3); minidump_log_filename_str[minidump_filename.length()] = '\0'; info->log_filename = minidump_log_filename_str; #endif info->pid = crashing_pid; BrowserThread::PostTask( BrowserThread::IO, FROM_HERE, base::Bind(&CrashHandlerHostLinux::QueueCrashDumpTask, base::Unretained(this), base::Passed(&info), signal_fd)); } void CrashHandlerHostLinux::QueueCrashDumpTask(scoped_ptr info, int signal_fd) { DCHECK(BrowserThread::CurrentlyOn(BrowserThread::IO)); // Send the done signal to the process: it can exit now. struct msghdr msg = {0}; struct iovec done_iov; done_iov.iov_base = const_cast("\x42"); done_iov.iov_len = 1; msg.msg_iov = &done_iov; msg.msg_iovlen = 1; HANDLE_EINTR(sendmsg(signal_fd, &msg, MSG_DONTWAIT | MSG_NOSIGNAL)); close(signal_fd); uploader_thread_->message_loop()->PostTask( FROM_HERE, base::Bind(&CrashDumpTask, base::Unretained(this), base::Passed(&info))); } void CrashHandlerHostLinux::WillDestroyCurrentMessageLoop() { file_descriptor_watcher_.StopWatchingFileDescriptor(); // If we are quitting and there are crash dumps in the queue, turn them into // no-ops. shutting_down_ = true; uploader_thread_->Stop(); } bool CrashHandlerHostLinux::IsShuttingDown() const { return shutting_down_; } } // namespace breakpad