// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <stddef.h> #include <stdint.h> #include <stdio.h> #include <string.h> #include <cmath> #include <string> #include <vector> #include <GLES2/gl2.h> #include <GLES2/gl2ext.h> #include <GLES2/gl2extchromium.h> #include "base/at_exit.h" #include "base/bind.h" #include "base/command_line.h" #include "base/files/file_util.h" #include "base/json/json_reader.h" #include "base/macros.h" #include "base/memory/ref_counted_memory.h" #include "base/message_loop/message_loop.h" #include "base/run_loop.h" #include "base/strings/stringprintf.h" #include "base/synchronization/waitable_event.h" #include "base/test/launcher/unit_test_launcher.h" #include "base/test/test_suite.h" #include "base/time/time.h" #include "base/trace_event/trace_event.h" #include "content/browser/compositor/gl_helper.h" #include "content/browser/compositor/gl_helper_readback_support.h" #include "content/browser/compositor/gl_helper_scaling.h" #include "gpu/command_buffer/client/gl_in_process_context.h" #include "gpu/command_buffer/client/gles2_implementation.h" #include "media/base/video_frame.h" #include "testing/gtest/include/gtest/gtest.h" #include "third_party/skia/include/core/SkBitmap.h" #include "third_party/skia/include/core/SkTypes.h" #include "ui/gl/gl_implementation.h" namespace content { content::GLHelper::ScalerQuality kQualities[] = { content::GLHelper::SCALER_QUALITY_BEST, content::GLHelper::SCALER_QUALITY_GOOD, content::GLHelper::SCALER_QUALITY_FAST, }; const char* kQualityNames[] = { "best", "good", "fast", }; class GLHelperTest : public testing::Test { protected: void SetUp() override { gpu::gles2::ContextCreationAttribHelper attributes; attributes.alpha_size = 8; attributes.depth_size = 24; attributes.red_size = 8; attributes.green_size = 8; attributes.blue_size = 8; attributes.stencil_size = 8; attributes.samples = 4; attributes.sample_buffers = 1; attributes.bind_generates_resource = false; context_.reset(gpu::GLInProcessContext::Create( nullptr, /* service */ nullptr, /* surface */ true, /* offscreen */ gfx::kNullAcceleratedWidget, /* window */ gfx::Size(1, 1), /* size */ nullptr, /* share_context */ true, /* use_global_share_group */ attributes, gfx::PreferDiscreteGpu, ::gpu::GLInProcessContextSharedMemoryLimits(), nullptr, /* gpu_memory_buffer_manager */ nullptr /* image_factory */)); gl_ = context_->GetImplementation(); gpu::ContextSupport* support = context_->GetImplementation(); helper_.reset(new content::GLHelper(gl_, support)); helper_scaling_.reset(new content::GLHelperScaling(gl_, helper_.get())); } void TearDown() override { helper_scaling_.reset(NULL); helper_.reset(NULL); context_.reset(NULL); } void StartTracing(const std::string& filter) { base::trace_event::TraceLog::GetInstance()->SetEnabled( base::trace_event::TraceConfig(filter, base::trace_event::RECORD_UNTIL_FULL), base::trace_event::TraceLog::RECORDING_MODE); } static void TraceDataCB( const base::Callback<void()>& callback, std::string* output, const scoped_refptr<base::RefCountedString>& json_events_str, bool has_more_events) { if (output->size() > 1 && !json_events_str->data().empty()) { output->append(","); } output->append(json_events_str->data()); if (!has_more_events) { callback.Run(); } } // End tracing, return tracing data in a simple map // of event name->counts. void EndTracing(std::map<std::string, int>* event_counts) { std::string json_data = "["; base::trace_event::TraceLog::GetInstance()->SetDisabled(); base::RunLoop run_loop; base::trace_event::TraceLog::GetInstance()->Flush( base::Bind(&GLHelperTest::TraceDataCB, run_loop.QuitClosure(), base::Unretained(&json_data))); run_loop.Run(); json_data.append("]"); std::string error_msg; scoped_ptr<base::Value> trace_data = base::JSONReader::ReadAndReturnError(json_data, 0, NULL, &error_msg); CHECK(trace_data) << "JSON parsing failed (" << error_msg << ") JSON data:" << std::endl << json_data; base::ListValue* list; CHECK(trace_data->GetAsList(&list)); for (size_t i = 0; i < list->GetSize(); i++) { base::Value* item = NULL; if (list->Get(i, &item)) { base::DictionaryValue* dict; CHECK(item->GetAsDictionary(&dict)); std::string name; CHECK(dict->GetString("name", &name)); std::string trace_type; CHECK(dict->GetString("ph", &trace_type)); // Count all except END traces, as they come in BEGIN/END pairs. if (trace_type != "E" && trace_type != "e") (*event_counts)[name]++; VLOG(1) << "trace name: " << name; } } } // Bicubic filter kernel function. static float Bicubic(float x) { const float a = -0.5; x = std::abs(x); float x2 = x * x; float x3 = x2 * x; if (x <= 1) { return (a + 2) * x3 - (a + 3) * x2 + 1; } else if (x < 2) { return a * x3 - 5 * a * x2 + 8 * a * x - 4 * a; } else { return 0.0f; } } // Look up a single channel value. Works for 4-channel and single channel // bitmaps. Clamp x/y. int Channel(SkBitmap* pixels, int x, int y, int c) { if (pixels->bytesPerPixel() == 4) { uint32_t* data = pixels->getAddr32(std::max(0, std::min(x, pixels->width() - 1)), std::max(0, std::min(y, pixels->height() - 1))); return (*data) >> (c * 8) & 0xff; } else { DCHECK_EQ(pixels->bytesPerPixel(), 1); DCHECK_EQ(c, 0); return *pixels->getAddr8(std::max(0, std::min(x, pixels->width() - 1)), std::max(0, std::min(y, pixels->height() - 1))); } } // Set a single channel value. Works for 4-channel and single channel // bitmaps. Clamp x/y. void SetChannel(SkBitmap* pixels, int x, int y, int c, int v) { DCHECK_GE(x, 0); DCHECK_GE(y, 0); DCHECK_LT(x, pixels->width()); DCHECK_LT(y, pixels->height()); if (pixels->bytesPerPixel() == 4) { uint32_t* data = pixels->getAddr32(x, y); v = std::max(0, std::min(v, 255)); *data = (*data & ~(0xffu << (c * 8))) | (v << (c * 8)); } else { DCHECK_EQ(pixels->bytesPerPixel(), 1); DCHECK_EQ(c, 0); uint8_t* data = pixels->getAddr8(x, y); v = std::max(0, std::min(v, 255)); *data = v; } } // Print all the R, G, B or A values from an SkBitmap in a // human-readable format. void PrintChannel(SkBitmap* pixels, int c) { for (int y = 0; y < pixels->height(); y++) { std::string formatted; for (int x = 0; x < pixels->width(); x++) { formatted.append(base::StringPrintf("%3d, ", Channel(pixels, x, y, c))); } LOG(ERROR) << formatted; } } // Print out the individual steps of a scaler pipeline. std::string PrintStages( const std::vector<GLHelperScaling::ScalerStage>& scaler_stages) { std::string ret; for (size_t i = 0; i < scaler_stages.size(); i++) { ret.append(base::StringPrintf( "%dx%d -> %dx%d ", scaler_stages[i].src_size.width(), scaler_stages[i].src_size.height(), scaler_stages[i].dst_size.width(), scaler_stages[i].dst_size.height())); bool xy_matters = false; switch (scaler_stages[i].shader) { case GLHelperScaling::SHADER_BILINEAR: ret.append("bilinear"); break; case GLHelperScaling::SHADER_BILINEAR2: ret.append("bilinear2"); xy_matters = true; break; case GLHelperScaling::SHADER_BILINEAR3: ret.append("bilinear3"); xy_matters = true; break; case GLHelperScaling::SHADER_BILINEAR4: ret.append("bilinear4"); xy_matters = true; break; case GLHelperScaling::SHADER_BILINEAR2X2: ret.append("bilinear2x2"); break; case GLHelperScaling::SHADER_BICUBIC_UPSCALE: ret.append("bicubic upscale"); xy_matters = true; break; case GLHelperScaling::SHADER_BICUBIC_HALF_1D: ret.append("bicubic 1/2"); xy_matters = true; break; case GLHelperScaling::SHADER_PLANAR: ret.append("planar"); break; case GLHelperScaling::SHADER_YUV_MRT_PASS1: ret.append("rgb2yuv pass 1"); break; case GLHelperScaling::SHADER_YUV_MRT_PASS2: ret.append("rgb2yuv pass 2"); break; } if (xy_matters) { if (scaler_stages[i].scale_x) { ret.append(" X"); } else { ret.append(" Y"); } } ret.append("\n"); } return ret; } bool CheckScale(double scale, int samples, bool already_scaled) { // 1:1 is valid if there is one sample. if (samples == 1 && scale == 1.0) { return true; } // Is it an exact down-scale (50%, 25%, etc.?) if (scale == 2.0 * samples) { return true; } // Upscales, only valid if we haven't already scaled in this dimension. if (!already_scaled) { // Is it a valid bilinear upscale? if (samples == 1 && scale <= 1.0) { return true; } // Multi-sample upscale-downscale combination? if (scale > samples / 2.0 && scale < samples) { return true; } } return false; } // Make sure that the stages of the scaler pipeline are sane. void ValidateScalerStages( content::GLHelper::ScalerQuality quality, const std::vector<GLHelperScaling::ScalerStage>& scaler_stages, const gfx::Size& dst_size, const std::string& message) { bool previous_error = HasFailure(); // First, check that the input size for each stage is equal to // the output size of the previous stage. for (size_t i = 1; i < scaler_stages.size(); i++) { EXPECT_EQ(scaler_stages[i - 1].dst_size.width(), scaler_stages[i].src_size.width()); EXPECT_EQ(scaler_stages[i - 1].dst_size.height(), scaler_stages[i].src_size.height()); EXPECT_EQ(scaler_stages[i].src_subrect.x(), 0); EXPECT_EQ(scaler_stages[i].src_subrect.y(), 0); EXPECT_EQ(scaler_stages[i].src_subrect.width(), scaler_stages[i].src_size.width()); EXPECT_EQ(scaler_stages[i].src_subrect.height(), scaler_stages[i].src_size.height()); } // Check the output size matches the destination of the last stage EXPECT_EQ(scaler_stages[scaler_stages.size() - 1].dst_size.width(), dst_size.width()); EXPECT_EQ(scaler_stages[scaler_stages.size() - 1].dst_size.height(), dst_size.height()); // Used to verify that up-scales are not attempted after some // other scale. bool scaled_x = false; bool scaled_y = false; for (size_t i = 0; i < scaler_stages.size(); i++) { // Note: 2.0 means scaling down by 50% double x_scale = static_cast<double>(scaler_stages[i].src_subrect.width()) / static_cast<double>(scaler_stages[i].dst_size.width()); double y_scale = static_cast<double>(scaler_stages[i].src_subrect.height()) / static_cast<double>(scaler_stages[i].dst_size.height()); int x_samples = 0; int y_samples = 0; // Codify valid scale operations. switch (scaler_stages[i].shader) { case GLHelperScaling::SHADER_PLANAR: case GLHelperScaling::SHADER_YUV_MRT_PASS1: case GLHelperScaling::SHADER_YUV_MRT_PASS2: EXPECT_TRUE(false) << "Invalid shader."; break; case GLHelperScaling::SHADER_BILINEAR: if (quality != content::GLHelper::SCALER_QUALITY_FAST) { x_samples = 1; y_samples = 1; } break; case GLHelperScaling::SHADER_BILINEAR2: x_samples = 2; y_samples = 1; break; case GLHelperScaling::SHADER_BILINEAR3: x_samples = 3; y_samples = 1; break; case GLHelperScaling::SHADER_BILINEAR4: x_samples = 4; y_samples = 1; break; case GLHelperScaling::SHADER_BILINEAR2X2: x_samples = 2; y_samples = 2; break; case GLHelperScaling::SHADER_BICUBIC_UPSCALE: if (scaler_stages[i].scale_x) { EXPECT_LT(x_scale, 1.0); EXPECT_EQ(y_scale, 1.0); } else { EXPECT_EQ(x_scale, 1.0); EXPECT_LT(y_scale, 1.0); } break; case GLHelperScaling::SHADER_BICUBIC_HALF_1D: if (scaler_stages[i].scale_x) { EXPECT_EQ(x_scale, 2.0); EXPECT_EQ(y_scale, 1.0); } else { EXPECT_EQ(x_scale, 1.0); EXPECT_EQ(y_scale, 2.0); } break; } if (!scaler_stages[i].scale_x) { std::swap(x_samples, y_samples); } if (x_samples) { EXPECT_TRUE(CheckScale(x_scale, x_samples, scaled_x)) << "x_scale = " << x_scale; } if (y_samples) { EXPECT_TRUE(CheckScale(y_scale, y_samples, scaled_y)) << "y_scale = " << y_scale; } if (x_scale != 1.0) { scaled_x = true; } if (y_scale != 1.0) { scaled_y = true; } } if (HasFailure() && !previous_error) { LOG(ERROR) << "Invalid scaler stages: " << message; LOG(ERROR) << "Scaler stages:"; LOG(ERROR) << PrintStages(scaler_stages); } } // Compares two bitmaps taking color types into account. Checks whether each // component of each pixel is no more than |maxdiff| apart. If bitmaps are not // similar enough, prints out |truth|, |other|, |source|, |scaler_stages| // and |message|. void Compare(SkBitmap* truth, SkBitmap* other, int maxdiff, SkBitmap* source, const std::vector<GLHelperScaling::ScalerStage>& scaler_stages, std::string message) { EXPECT_EQ(truth->width(), other->width()); EXPECT_EQ(truth->height(), other->height()); bool swizzle = (truth->colorType() == kRGBA_8888_SkColorType && other->colorType() == kBGRA_8888_SkColorType) || (truth->colorType() == kBGRA_8888_SkColorType && other->colorType() == kRGBA_8888_SkColorType); EXPECT_TRUE(swizzle || truth->colorType() == other->colorType()); int bpp = truth->bytesPerPixel(); for (int x = 0; x < truth->width(); x++) { for (int y = 0; y < truth->height(); y++) { for (int c = 0; c < bpp; c++) { int a = Channel(truth, x, y, c); // swizzle when comparing if needed int b = swizzle && (c == 0 || c == 2) ? Channel(other, x, y, (c + 2) & 2) : Channel(other, x, y, c); EXPECT_NEAR(a, b, maxdiff) << " x=" << x << " y=" << y << " c=" << c << " " << message; if (std::abs(a - b) > maxdiff) { LOG(ERROR) << "-------expected--------"; for (int i = 0; i < bpp; i++) { LOG(ERROR) << "Channel " << i << ":"; PrintChannel(truth, i); } LOG(ERROR) << "-------actual--------"; for (int i = 0; i < bpp; i++) { LOG(ERROR) << "Channel " << i << ":"; PrintChannel(other, i); } if (source) { LOG(ERROR) << "-------original--------"; for (int i = 0; i < source->bytesPerPixel(); i++) { LOG(ERROR) << "Channel " << i << ":"; PrintChannel(source, i); } } LOG(ERROR) << "-----Scaler stages------"; LOG(ERROR) << PrintStages(scaler_stages); return; } } } } } // Get a single R, G, B or A value as a float. float ChannelAsFloat(SkBitmap* pixels, int x, int y, int c) { return Channel(pixels, x, y, c) / 255.0; } // Works like a GL_LINEAR lookup on an SkBitmap. float Bilinear(SkBitmap* pixels, float x, float y, int c) { x -= 0.5; y -= 0.5; int base_x = static_cast<int>(floorf(x)); int base_y = static_cast<int>(floorf(y)); x -= base_x; y -= base_y; return (ChannelAsFloat(pixels, base_x, base_y, c) * (1 - x) * (1 - y) + ChannelAsFloat(pixels, base_x + 1, base_y, c) * x * (1 - y) + ChannelAsFloat(pixels, base_x, base_y + 1, c) * (1 - x) * y + ChannelAsFloat(pixels, base_x + 1, base_y + 1, c) * x * y); } // Encodes an RGBA bitmap to grayscale. // Reference implementation for // GLHelper::CopyToTextureImpl::EncodeTextureAsGrayscale. void EncodeToGrayscaleSlow(SkBitmap* input, SkBitmap* output) { const float kRGBtoGrayscaleColorWeights[3] = {0.213f, 0.715f, 0.072f}; CHECK_EQ(kAlpha_8_SkColorType, output->colorType()); CHECK_EQ(input->width(), output->width()); CHECK_EQ(input->height(), output->height()); CHECK_EQ(input->colorType(), kRGBA_8888_SkColorType); for (int dst_y = 0; dst_y < output->height(); dst_y++) { for (int dst_x = 0; dst_x < output->width(); dst_x++) { float c0 = ChannelAsFloat(input, dst_x, dst_y, 0); float c1 = ChannelAsFloat(input, dst_x, dst_y, 1); float c2 = ChannelAsFloat(input, dst_x, dst_y, 2); float value = c0 * kRGBtoGrayscaleColorWeights[0] + c1 * kRGBtoGrayscaleColorWeights[1] + c2 * kRGBtoGrayscaleColorWeights[2]; SetChannel(output, dst_x, dst_y, 0, static_cast<int>(value * 255.0f + 0.5f)); } } } // Very slow bicubic / bilinear scaler for reference. void ScaleSlow(SkBitmap* input, SkBitmap* output, content::GLHelper::ScalerQuality quality) { float xscale = static_cast<float>(input->width()) / output->width(); float yscale = static_cast<float>(input->height()) / output->height(); float clamped_xscale = xscale < 1.0 ? 1.0 : 1.0 / xscale; float clamped_yscale = yscale < 1.0 ? 1.0 : 1.0 / yscale; for (int dst_y = 0; dst_y < output->height(); dst_y++) { for (int dst_x = 0; dst_x < output->width(); dst_x++) { for (int channel = 0; channel < 4; channel++) { float dst_x_in_src = (dst_x + 0.5f) * xscale; float dst_y_in_src = (dst_y + 0.5f) * yscale; float value = 0.0f; float sum = 0.0f; switch (quality) { case content::GLHelper::SCALER_QUALITY_BEST: for (int src_y = -10; src_y < input->height() + 10; ++src_y) { float coeff_y = Bicubic((src_y + 0.5f - dst_y_in_src) * clamped_yscale); if (coeff_y == 0.0f) { continue; } for (int src_x = -10; src_x < input->width() + 10; ++src_x) { float coeff = coeff_y * Bicubic((src_x + 0.5f - dst_x_in_src) * clamped_xscale); if (coeff == 0.0f) { continue; } sum += coeff; float c = ChannelAsFloat(input, src_x, src_y, channel); value += c * coeff; } } break; case content::GLHelper::SCALER_QUALITY_GOOD: { int xshift = 0, yshift = 0; while ((output->width() << xshift) < input->width()) { xshift++; } while ((output->height() << yshift) < input->height()) { yshift++; } int xmag = 1 << xshift; int ymag = 1 << yshift; if (xmag == 4 && output->width() * 3 >= input->width()) { xmag = 3; } if (ymag == 4 && output->height() * 3 >= input->height()) { ymag = 3; } for (int x = 0; x < xmag; x++) { for (int y = 0; y < ymag; y++) { value += Bilinear( input, (dst_x * xmag + x + 0.5) * xscale / xmag, (dst_y * ymag + y + 0.5) * yscale / ymag, channel); sum += 1.0; } } break; } case content::GLHelper::SCALER_QUALITY_FAST: value = Bilinear(input, dst_x_in_src, dst_y_in_src, channel); sum = 1.0; } value /= sum; SetChannel(output, dst_x, dst_y, channel, static_cast<int>(value * 255.0f + 0.5f)); } } } } void FlipSKBitmap(SkBitmap* bitmap) { int bpp = bitmap->bytesPerPixel(); DCHECK(bpp == 4 || bpp == 1); int top_line = 0; int bottom_line = bitmap->height() - 1; while (top_line < bottom_line) { for (int x = 0; x < bitmap->width(); x++) { bpp == 4 ? std::swap(*bitmap->getAddr32(x, top_line), *bitmap->getAddr32(x, bottom_line)) : std::swap(*bitmap->getAddr8(x, top_line), *bitmap->getAddr8(x, bottom_line)); } top_line++; bottom_line--; } } // Swaps red and blue channels in each pixel in a 32-bit bitmap. void SwizzleSKBitmap(SkBitmap* bitmap) { int bpp = bitmap->bytesPerPixel(); DCHECK(bpp == 4); for (int y = 0; y < bitmap->height(); y++) { for (int x = 0; x < bitmap->width(); x++) { // Swap channels 0 and 2 (red and blue) int c0 = Channel(bitmap, x, y, 0); int c2 = Channel(bitmap, x, y, 2); SetChannel(bitmap, x, y, 2, c0); SetChannel(bitmap, x, y, 0, c2); } } } // gl_helper scales recursively, so we'll need to do that // in the reference implementation too. void ScaleSlowRecursive(SkBitmap* input, SkBitmap* output, content::GLHelper::ScalerQuality quality) { if (quality == content::GLHelper::SCALER_QUALITY_FAST || quality == content::GLHelper::SCALER_QUALITY_GOOD) { ScaleSlow(input, output, quality); return; } float xscale = static_cast<float>(output->width()) / input->width(); // This corresponds to all the operations we can do directly. float yscale = static_cast<float>(output->height()) / input->height(); if ((xscale == 1.0f && yscale == 1.0f) || (xscale == 0.5f && yscale == 1.0f) || (xscale == 1.0f && yscale == 0.5f) || (xscale >= 1.0f && yscale == 1.0f) || (xscale == 1.0f && yscale >= 1.0f)) { ScaleSlow(input, output, quality); return; } // Now we break the problem down into smaller pieces, using the // operations available. int xtmp = input->width(); int ytmp = input->height(); if (output->height() != input->height()) { ytmp = output->height(); while (ytmp < input->height() && ytmp * 2 != input->height()) { ytmp += ytmp; } } else { xtmp = output->width(); while (xtmp < input->width() && xtmp * 2 != input->width()) { xtmp += xtmp; } } SkBitmap tmp; tmp.allocN32Pixels(xtmp, ytmp); ScaleSlowRecursive(input, &tmp, quality); ScaleSlowRecursive(&tmp, output, quality); } // Creates an RGBA SkBitmap scoped_ptr<SkBitmap> CreateTestBitmap(int width, int height, int test_pattern) { scoped_ptr<SkBitmap> bitmap(new SkBitmap); bitmap->allocPixels(SkImageInfo::Make(width, height, kRGBA_8888_SkColorType, kPremul_SkAlphaType)); for (int x = 0; x < width; ++x) { for (int y = 0; y < height; ++y) { switch (test_pattern) { case 0: // Smooth test pattern SetChannel(bitmap.get(), x, y, 0, x * 10); SetChannel(bitmap.get(), x, y, 0, y == 0 ? x * 50 : x * 10); SetChannel(bitmap.get(), x, y, 1, y * 10); SetChannel(bitmap.get(), x, y, 2, (x + y) * 10); SetChannel(bitmap.get(), x, y, 3, 255); break; case 1: // Small blocks SetChannel(bitmap.get(), x, y, 0, x & 1 ? 255 : 0); SetChannel(bitmap.get(), x, y, 1, y & 1 ? 255 : 0); SetChannel(bitmap.get(), x, y, 2, (x + y) & 1 ? 255 : 0); SetChannel(bitmap.get(), x, y, 3, 255); break; case 2: // Medium blocks SetChannel(bitmap.get(), x, y, 0, 10 + x / 2 * 50); SetChannel(bitmap.get(), x, y, 1, 10 + y / 3 * 50); SetChannel(bitmap.get(), x, y, 2, (x + y) / 5 * 50 + 5); SetChannel(bitmap.get(), x, y, 3, 255); break; } } } return bitmap; } // Binds texture and framebuffer and loads the bitmap pixels into the texture. void BindTextureAndFrameBuffer(GLuint texture, GLuint framebuffer, SkBitmap* bitmap, int width, int height) { gl_->BindFramebuffer(GL_FRAMEBUFFER, framebuffer); gl_->BindTexture(GL_TEXTURE_2D, texture); gl_->TexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, bitmap->getPixels()); } // Create a test image, transform it using // GLHelper::CropScaleReadbackAndCleanTexture and a reference implementation // and compare the results. void TestCropScaleReadbackAndCleanTexture(int xsize, int ysize, int scaled_xsize, int scaled_ysize, int test_pattern, SkColorType out_color_type, bool swizzle, size_t quality_index) { DCHECK(out_color_type == kAlpha_8_SkColorType || out_color_type == kRGBA_8888_SkColorType || out_color_type == kBGRA_8888_SkColorType); GLuint src_texture; gl_->GenTextures(1, &src_texture); GLuint framebuffer; gl_->GenFramebuffers(1, &framebuffer); scoped_ptr<SkBitmap> input_pixels = CreateTestBitmap(xsize, ysize, test_pattern); BindTextureAndFrameBuffer(src_texture, framebuffer, input_pixels.get(), xsize, ysize); std::string message = base::StringPrintf( "input size: %dx%d " "output size: %dx%d " "pattern: %d , quality: %s, " "out_color_type: %d", xsize, ysize, scaled_xsize, scaled_ysize, test_pattern, kQualityNames[quality_index], out_color_type); // Transform the bitmap using GLHelper::CropScaleReadbackAndCleanTexture. SkBitmap output_pixels; output_pixels.allocPixels(SkImageInfo::Make( scaled_xsize, scaled_ysize, out_color_type, kPremul_SkAlphaType)); base::RunLoop run_loop; gfx::Size encoded_texture_size; helper_->CropScaleReadbackAndCleanTexture( src_texture, gfx::Size(xsize, ysize), gfx::Rect(xsize, ysize), gfx::Size(scaled_xsize, scaled_ysize), static_cast<unsigned char*>(output_pixels.getPixels()), out_color_type, base::Bind(&callcallback, run_loop.QuitClosure()), kQualities[quality_index]); run_loop.Run(); // CropScaleReadbackAndCleanTexture flips the pixels. Flip them back. FlipSKBitmap(&output_pixels); // If the bitmap shouldn't have changed - compare against input. if (xsize == scaled_xsize && ysize == scaled_ysize && out_color_type != kAlpha_8_SkColorType) { const std::vector<GLHelperScaling::ScalerStage> dummy_stages; Compare(input_pixels.get(), &output_pixels, 0, NULL, dummy_stages, message + " comparing against input"); return; } // Now transform the bitmap using the reference implementation. SkBitmap scaled_pixels; scaled_pixels.allocPixels(SkImageInfo::Make(scaled_xsize, scaled_ysize, kRGBA_8888_SkColorType, kPremul_SkAlphaType)); SkBitmap truth_pixels; // Step 1: Scale ScaleSlowRecursive(input_pixels.get(), &scaled_pixels, kQualities[quality_index]); // Step 2: Encode to grayscale if needed. if (out_color_type == kAlpha_8_SkColorType) { truth_pixels.allocPixels(SkImageInfo::Make( scaled_xsize, scaled_ysize, out_color_type, kPremul_SkAlphaType)); EncodeToGrayscaleSlow(&scaled_pixels, &truth_pixels); } else { truth_pixels = scaled_pixels; } // Now compare the results. SkAutoLockPixels lock_input(truth_pixels); const std::vector<GLHelperScaling::ScalerStage> dummy_stages; Compare(&truth_pixels, &output_pixels, 2, input_pixels.get(), dummy_stages, message + " comparing against transformed/scaled"); gl_->DeleteTextures(1, &src_texture); gl_->DeleteFramebuffers(1, &framebuffer); } // Scaling test: Create a test image, scale it using GLHelperScaling // and a reference implementation and compare the results. void TestScale(int xsize, int ysize, int scaled_xsize, int scaled_ysize, int test_pattern, size_t quality_index, bool flip) { GLuint src_texture; gl_->GenTextures(1, &src_texture); GLuint framebuffer; gl_->GenFramebuffers(1, &framebuffer); scoped_ptr<SkBitmap> input_pixels = CreateTestBitmap(xsize, ysize, test_pattern); BindTextureAndFrameBuffer(src_texture, framebuffer, input_pixels.get(), xsize, ysize); std::string message = base::StringPrintf( "input size: %dx%d " "output size: %dx%d " "pattern: %d quality: %s", xsize, ysize, scaled_xsize, scaled_ysize, test_pattern, kQualityNames[quality_index]); std::vector<GLHelperScaling::ScalerStage> stages; helper_scaling_->ComputeScalerStages(kQualities[quality_index], gfx::Size(xsize, ysize), gfx::Rect(0, 0, xsize, ysize), gfx::Size(scaled_xsize, scaled_ysize), flip, false, &stages); ValidateScalerStages(kQualities[quality_index], stages, gfx::Size(scaled_xsize, scaled_ysize), message); GLuint dst_texture = helper_->CopyAndScaleTexture( src_texture, gfx::Size(xsize, ysize), gfx::Size(scaled_xsize, scaled_ysize), flip, kQualities[quality_index]); SkBitmap output_pixels; output_pixels.allocPixels(SkImageInfo::Make(scaled_xsize, scaled_ysize, kRGBA_8888_SkColorType, kPremul_SkAlphaType)); helper_->ReadbackTextureSync( dst_texture, gfx::Rect(0, 0, scaled_xsize, scaled_ysize), static_cast<unsigned char*>(output_pixels.getPixels()), kRGBA_8888_SkColorType); if (flip) { // Flip the pixels back. FlipSKBitmap(&output_pixels); } // If the bitmap shouldn't have changed - compare against input. if (xsize == scaled_xsize && ysize == scaled_ysize) { Compare(input_pixels.get(), &output_pixels, 0, NULL, stages, message + " comparing against input"); return; } // Now scale the bitmap using the reference implementation. SkBitmap truth_pixels; truth_pixels.allocPixels(SkImageInfo::Make(scaled_xsize, scaled_ysize, kRGBA_8888_SkColorType, kPremul_SkAlphaType)); ScaleSlowRecursive(input_pixels.get(), &truth_pixels, kQualities[quality_index]); Compare(&truth_pixels, &output_pixels, 2, input_pixels.get(), stages, message + " comparing against scaled"); gl_->DeleteTextures(1, &src_texture); gl_->DeleteTextures(1, &dst_texture); gl_->DeleteFramebuffers(1, &framebuffer); } // Create a scaling pipeline and check that it is made up of // valid scaling operations. void TestScalerPipeline(size_t quality, int xsize, int ysize, int dst_xsize, int dst_ysize) { std::vector<GLHelperScaling::ScalerStage> stages; helper_scaling_->ComputeScalerStages( kQualities[quality], gfx::Size(xsize, ysize), gfx::Rect(0, 0, xsize, ysize), gfx::Size(dst_xsize, dst_ysize), false, false, &stages); ValidateScalerStages(kQualities[quality], stages, gfx::Size(dst_xsize, dst_ysize), base::StringPrintf("input size: %dx%d " "output size: %dx%d " "quality: %s", xsize, ysize, dst_xsize, dst_ysize, kQualityNames[quality])); } // Create a scaling pipeline and make sure that the steps // are exactly the steps we expect. void CheckPipeline(content::GLHelper::ScalerQuality quality, int xsize, int ysize, int dst_xsize, int dst_ysize, const std::string& description) { std::vector<GLHelperScaling::ScalerStage> stages; helper_scaling_->ComputeScalerStages( quality, gfx::Size(xsize, ysize), gfx::Rect(0, 0, xsize, ysize), gfx::Size(dst_xsize, dst_ysize), false, false, &stages); ValidateScalerStages(content::GLHelper::SCALER_QUALITY_GOOD, stages, gfx::Size(dst_xsize, dst_ysize), ""); EXPECT_EQ(PrintStages(stages), description); } // Note: Left/Right means Top/Bottom when used for Y dimension. enum Margin { MarginLeft, MarginMiddle, MarginRight, MarginInvalid, }; static Margin NextMargin(Margin m) { switch (m) { case MarginLeft: return MarginMiddle; case MarginMiddle: return MarginRight; case MarginRight: return MarginInvalid; default: return MarginInvalid; } } int compute_margin(int insize, int outsize, Margin m) { int available = outsize - insize; switch (m) { default: EXPECT_TRUE(false) << "This should not happen."; return 0; case MarginLeft: return 0; case MarginMiddle: return (available / 2) & ~1; case MarginRight: return available; } } // Convert 0.0 - 1.0 to 0 - 255 int float_to_byte(float v) { int ret = static_cast<int>(floorf(v * 255.0f + 0.5f)); if (ret < 0) { return 0; } if (ret > 255) { return 255; } return ret; } static void callcallback(const base::Callback<void()>& callback, bool result) { callback.Run(); } void PrintPlane(unsigned char* plane, int xsize, int stride, int ysize) { for (int y = 0; y < ysize; y++) { std::string formatted; for (int x = 0; x < xsize; x++) { formatted.append(base::StringPrintf("%3d, ", plane[y * stride + x])); } LOG(ERROR) << formatted << " (" << (plane + y * stride) << ")"; } } // Compare two planes make sure that each component of each pixel // is no more than |maxdiff| apart. void ComparePlane(unsigned char* truth, int truth_stride, unsigned char* other, int other_stride, int maxdiff, int xsize, int ysize, SkBitmap* source, std::string message) { for (int x = 0; x < xsize; x++) { for (int y = 0; y < ysize; y++) { int a = other[y * other_stride + x]; int b = truth[y * truth_stride + x]; EXPECT_NEAR(a, b, maxdiff) << " x=" << x << " y=" << y << " " << message; if (std::abs(a - b) > maxdiff) { LOG(ERROR) << "-------expected--------"; PrintPlane(truth, xsize, truth_stride, ysize); LOG(ERROR) << "-------actual--------"; PrintPlane(other, xsize, other_stride, ysize); if (source) { LOG(ERROR) << "-------before yuv conversion: red--------"; PrintChannel(source, 0); LOG(ERROR) << "-------before yuv conversion: green------"; PrintChannel(source, 1); LOG(ERROR) << "-------before yuv conversion: blue-------"; PrintChannel(source, 2); } return; } } } } void DrawGridToBitmap(int w, int h, SkColor background_color, SkColor grid_color, int grid_pitch, int grid_width, SkBitmap& bmp) { ASSERT_GT(grid_pitch, 0); ASSERT_GT(grid_width, 0); ASSERT_NE(background_color, grid_color); for (int y = 0; y < h; ++y) { bool y_on_grid = ((y % grid_pitch) < grid_width); for (int x = 0; x < w; ++x) { bool on_grid = (y_on_grid || ((x % grid_pitch) < grid_width)); if (bmp.colorType() == kRGBA_8888_SkColorType || bmp.colorType() == kBGRA_8888_SkColorType) { *bmp.getAddr32(x, y) = (on_grid ? grid_color : background_color); } else if (bmp.colorType() == kRGB_565_SkColorType) { *bmp.getAddr16(x, y) = (on_grid ? grid_color : background_color); } } } } void DrawCheckerToBitmap(int w, int h, SkColor color1, SkColor color2, int rect_w, int rect_h, SkBitmap& bmp) { ASSERT_GT(rect_w, 0); ASSERT_GT(rect_h, 0); ASSERT_NE(color1, color2); for (int y = 0; y < h; ++y) { bool y_bit = (((y / rect_h) & 0x1) == 0); for (int x = 0; x < w; ++x) { bool x_bit = (((x / rect_w) & 0x1) == 0); bool use_color2 = (x_bit != y_bit); // xor if (bmp.colorType() == kRGBA_8888_SkColorType || bmp.colorType() == kBGRA_8888_SkColorType) { *bmp.getAddr32(x, y) = (use_color2 ? color2 : color1); } else if (bmp.colorType() == kRGB_565_SkColorType) { *bmp.getAddr16(x, y) = (use_color2 ? color2 : color1); } } } } bool ColorComponentsClose(SkColor component1, SkColor component2, SkColorType color_type) { int c1 = static_cast<int>(component1); int c2 = static_cast<int>(component2); bool result = false; switch (color_type) { case kRGBA_8888_SkColorType: case kBGRA_8888_SkColorType: result = (std::abs(c1 - c2) == 0); break; case kRGB_565_SkColorType: result = (std::abs(c1 - c2) <= 7); break; default: break; } return result; } bool ColorsClose(SkColor color1, SkColor color2, SkColorType color_type) { bool red = ColorComponentsClose(SkColorGetR(color1), SkColorGetR(color2), color_type); bool green = ColorComponentsClose(SkColorGetG(color1), SkColorGetG(color2), color_type); bool blue = ColorComponentsClose(SkColorGetB(color1), SkColorGetB(color2), color_type); bool alpha = ColorComponentsClose(SkColorGetA(color1), SkColorGetA(color2), color_type); if (color_type == kRGB_565_SkColorType) { return red && blue && green; } return red && blue && green && alpha; } bool IsEqual(const SkBitmap& bmp1, const SkBitmap& bmp2) { if (bmp1.isNull() && bmp2.isNull()) return true; if (bmp1.width() != bmp2.width() || bmp1.height() != bmp2.height()) { LOG(ERROR) << "Bitmap geometry check failure"; return false; } if (bmp1.colorType() != bmp2.colorType()) return false; SkAutoLockPixels lock1(bmp1); SkAutoLockPixels lock2(bmp2); if (!bmp1.getPixels() || !bmp2.getPixels()) { LOG(ERROR) << "Empty Bitmap!"; return false; } for (int y = 0; y < bmp1.height(); ++y) { for (int x = 0; x < bmp1.width(); ++x) { if (!ColorsClose(bmp1.getColor(x, y), bmp2.getColor(x, y), bmp1.colorType())) { LOG(ERROR) << "Bitmap color comparision failure"; return false; } } } return true; } void BindAndAttachTextureWithPixels(GLuint src_texture, SkColorType color_type, const gfx::Size& src_size, const SkBitmap& input_pixels) { gl_->BindTexture(GL_TEXTURE_2D, src_texture); GLenum format = 0; switch (color_type) { case kBGRA_8888_SkColorType: format = GL_BGRA_EXT; break; case kRGBA_8888_SkColorType: format = GL_RGBA; break; case kRGB_565_SkColorType: format = GL_RGB; break; default: NOTREACHED(); } GLenum type = (color_type == kRGB_565_SkColorType) ? GL_UNSIGNED_SHORT_5_6_5 : GL_UNSIGNED_BYTE; gl_->TexImage2D(GL_TEXTURE_2D, 0, format, src_size.width(), src_size.height(), 0, format, type, input_pixels.getPixels()); } void ReadBackTexture(GLuint src_texture, const gfx::Size& src_size, unsigned char* pixels, SkColorType color_type, bool async) { if (async) { base::RunLoop run_loop; helper_->ReadbackTextureAsync( src_texture, src_size, pixels, color_type, base::Bind(&callcallback, run_loop.QuitClosure())); run_loop.Run(); } else { helper_->ReadbackTextureSync(src_texture, gfx::Rect(src_size), pixels, color_type); } } // Test basic format readback. bool TestTextureFormatReadback(const gfx::Size& src_size, SkColorType color_type, bool async) { SkImageInfo info = SkImageInfo::Make(src_size.width(), src_size.height(), color_type, kPremul_SkAlphaType); if (!helper_->IsReadbackConfigSupported(color_type)) { LOG(INFO) << "Skipping test format not supported" << color_type; return true; } GLuint src_texture; gl_->GenTextures(1, &src_texture); SkBitmap input_pixels; input_pixels.allocPixels(info); // Test Pattern-1, Fill with Plain color pattern. // Erase the input bitmap with red color. input_pixels.eraseColor(SK_ColorRED); BindAndAttachTextureWithPixels(src_texture, color_type, src_size, input_pixels); SkBitmap output_pixels; output_pixels.allocPixels(info); // Initialize the output bitmap with Green color. // When the readback is over output bitmap should have the red color. output_pixels.eraseColor(SK_ColorGREEN); uint8_t* pixels = static_cast<uint8_t*>(output_pixels.getPixels()); ReadBackTexture(src_texture, src_size, pixels, color_type, async); bool result = IsEqual(input_pixels, output_pixels); if (!result) { LOG(ERROR) << "Bitmap comparision failure Pattern-1"; return false; } const int rect_w = 10, rect_h = 4, src_grid_pitch = 10, src_grid_width = 4; const SkColor color1 = SK_ColorRED, color2 = SK_ColorBLUE; // Test Pattern-2, Fill with Grid Pattern. DrawGridToBitmap(src_size.width(), src_size.height(), color2, color1, src_grid_pitch, src_grid_width, input_pixels); BindAndAttachTextureWithPixels(src_texture, color_type, src_size, input_pixels); ReadBackTexture(src_texture, src_size, pixels, color_type, async); result = IsEqual(input_pixels, output_pixels); if (!result) { LOG(ERROR) << "Bitmap comparision failure Pattern-2"; return false; } // Test Pattern-3, Fill with CheckerBoard Pattern. DrawCheckerToBitmap(src_size.width(), src_size.height(), color1, color2, rect_w, rect_h, input_pixels); BindAndAttachTextureWithPixels(src_texture, color_type, src_size, input_pixels); ReadBackTexture(src_texture, src_size, pixels, color_type, async); result = IsEqual(input_pixels, output_pixels); if (!result) { LOG(ERROR) << "Bitmap comparision failure Pattern-3"; return false; } gl_->DeleteTextures(1, &src_texture); if (HasFailure()) { return false; } return true; } // YUV readback test. Create a test pattern, convert to YUV // with reference implementation and compare to what gl_helper // returns. void TestYUVReadback(int xsize, int ysize, int output_xsize, int output_ysize, int xmargin, int ymargin, int test_pattern, bool flip, bool use_mrt, content::GLHelper::ScalerQuality quality) { GLuint src_texture; gl_->GenTextures(1, &src_texture); SkBitmap input_pixels; input_pixels.allocN32Pixels(xsize, ysize); for (int x = 0; x < xsize; ++x) { for (int y = 0; y < ysize; ++y) { switch (test_pattern) { case 0: // Smooth test pattern SetChannel(&input_pixels, x, y, 0, x * 10); SetChannel(&input_pixels, x, y, 1, y * 10); SetChannel(&input_pixels, x, y, 2, (x + y) * 10); SetChannel(&input_pixels, x, y, 3, 255); break; case 1: // Small blocks SetChannel(&input_pixels, x, y, 0, x & 1 ? 255 : 0); SetChannel(&input_pixels, x, y, 1, y & 1 ? 255 : 0); SetChannel(&input_pixels, x, y, 2, (x + y) & 1 ? 255 : 0); SetChannel(&input_pixels, x, y, 3, 255); break; case 2: // Medium blocks SetChannel(&input_pixels, x, y, 0, 10 + x / 2 * 50); SetChannel(&input_pixels, x, y, 1, 10 + y / 3 * 50); SetChannel(&input_pixels, x, y, 2, (x + y) / 5 * 50 + 5); SetChannel(&input_pixels, x, y, 3, 255); break; } } } gl_->BindTexture(GL_TEXTURE_2D, src_texture); gl_->TexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, xsize, ysize, 0, GL_RGBA, GL_UNSIGNED_BYTE, input_pixels.getPixels()); gpu::Mailbox mailbox; gl_->GenMailboxCHROMIUM(mailbox.name); EXPECT_FALSE(mailbox.IsZero()); gl_->ProduceTextureCHROMIUM(GL_TEXTURE_2D, mailbox.name); const GLuint64 fence_sync = gl_->InsertFenceSyncCHROMIUM(); gl_->ShallowFlushCHROMIUM(); gpu::SyncToken sync_token; gl_->GenSyncTokenCHROMIUM(fence_sync, sync_token.GetData()); std::string message = base::StringPrintf( "input size: %dx%d " "output size: %dx%d " "margin: %dx%d " "pattern: %d %s %s", xsize, ysize, output_xsize, output_ysize, xmargin, ymargin, test_pattern, flip ? "flip" : "noflip", flip ? "mrt" : "nomrt"); scoped_ptr<ReadbackYUVInterface> yuv_reader( helper_->CreateReadbackPipelineYUV( quality, gfx::Size(xsize, ysize), gfx::Rect(0, 0, xsize, ysize), gfx::Size(xsize, ysize), flip, use_mrt)); scoped_refptr<media::VideoFrame> output_frame = media::VideoFrame::CreateFrame( media::PIXEL_FORMAT_YV12, // The coded size of the output frame is rounded up to the next // 16-byte boundary. This tests that the readback is being // positioned inside the frame's visible region, and not dependent // on its coded size. gfx::Size((output_xsize + 15) & ~15, (output_ysize + 15) & ~15), gfx::Rect(0, 0, output_xsize, output_ysize), gfx::Size(output_xsize, output_ysize), base::TimeDelta::FromSeconds(0)); scoped_refptr<media::VideoFrame> truth_frame = media::VideoFrame::CreateFrame( media::PIXEL_FORMAT_YV12, gfx::Size(output_xsize, output_ysize), gfx::Rect(0, 0, output_xsize, output_ysize), gfx::Size(output_xsize, output_ysize), base::TimeDelta::FromSeconds(0)); base::RunLoop run_loop; yuv_reader->ReadbackYUV(mailbox, sync_token, output_frame.get(), gfx::Point(xmargin, ymargin), base::Bind(&callcallback, run_loop.QuitClosure())); run_loop.Run(); if (flip) { FlipSKBitmap(&input_pixels); } unsigned char* Y = truth_frame->visible_data(media::VideoFrame::kYPlane); unsigned char* U = truth_frame->visible_data(media::VideoFrame::kUPlane); unsigned char* V = truth_frame->visible_data(media::VideoFrame::kVPlane); int32_t y_stride = truth_frame->stride(media::VideoFrame::kYPlane); int32_t u_stride = truth_frame->stride(media::VideoFrame::kUPlane); int32_t v_stride = truth_frame->stride(media::VideoFrame::kVPlane); memset(Y, 0x00, y_stride * output_ysize); memset(U, 0x80, u_stride * output_ysize / 2); memset(V, 0x80, v_stride * output_ysize / 2); const float kRGBtoYColorWeights[] = {0.257f, 0.504f, 0.098f, 0.0625f}; const float kRGBtoUColorWeights[] = {-0.148f, -0.291f, 0.439f, 0.5f}; const float kRGBtoVColorWeights[] = {0.439f, -0.368f, -0.071f, 0.5f}; for (int y = 0; y < ysize; y++) { for (int x = 0; x < xsize; x++) { Y[(y + ymargin) * y_stride + x + xmargin] = float_to_byte( ChannelAsFloat(&input_pixels, x, y, 0) * kRGBtoYColorWeights[0] + ChannelAsFloat(&input_pixels, x, y, 1) * kRGBtoYColorWeights[1] + ChannelAsFloat(&input_pixels, x, y, 2) * kRGBtoYColorWeights[2] + kRGBtoYColorWeights[3]); } } for (int y = 0; y < ysize / 2; y++) { for (int x = 0; x < xsize / 2; x++) { U[(y + ymargin / 2) * u_stride + x + xmargin / 2] = float_to_byte(Bilinear(&input_pixels, x * 2 + 1.0, y * 2 + 1.0, 0) * kRGBtoUColorWeights[0] + Bilinear(&input_pixels, x * 2 + 1.0, y * 2 + 1.0, 1) * kRGBtoUColorWeights[1] + Bilinear(&input_pixels, x * 2 + 1.0, y * 2 + 1.0, 2) * kRGBtoUColorWeights[2] + kRGBtoUColorWeights[3]); V[(y + ymargin / 2) * v_stride + x + xmargin / 2] = float_to_byte(Bilinear(&input_pixels, x * 2 + 1.0, y * 2 + 1.0, 0) * kRGBtoVColorWeights[0] + Bilinear(&input_pixels, x * 2 + 1.0, y * 2 + 1.0, 1) * kRGBtoVColorWeights[1] + Bilinear(&input_pixels, x * 2 + 1.0, y * 2 + 1.0, 2) * kRGBtoVColorWeights[2] + kRGBtoVColorWeights[3]); } } ComparePlane( Y, y_stride, output_frame->visible_data(media::VideoFrame::kYPlane), output_frame->stride(media::VideoFrame::kYPlane), 2, output_xsize, output_ysize, &input_pixels, message + " Y plane"); ComparePlane( U, u_stride, output_frame->visible_data(media::VideoFrame::kUPlane), output_frame->stride(media::VideoFrame::kUPlane), 2, output_xsize / 2, output_ysize / 2, &input_pixels, message + " U plane"); ComparePlane( V, v_stride, output_frame->visible_data(media::VideoFrame::kVPlane), output_frame->stride(media::VideoFrame::kVPlane), 2, output_xsize / 2, output_ysize / 2, &input_pixels, message + " V plane"); gl_->DeleteTextures(1, &src_texture); } void TestAddOps(int src, int dst, bool scale_x, bool allow3) { std::deque<GLHelperScaling::ScaleOp> ops; GLHelperScaling::ScaleOp::AddOps(src, dst, scale_x, allow3, &ops); // Scale factor 3 is a special case. // It is currently only allowed by itself. if (allow3 && dst * 3 >= src && dst * 2 < src) { EXPECT_EQ(ops[0].scale_factor, 3); EXPECT_EQ(ops.size(), 1U); EXPECT_EQ(ops[0].scale_x, scale_x); EXPECT_EQ(ops[0].scale_size, dst); return; } for (size_t i = 0; i < ops.size(); i++) { EXPECT_EQ(ops[i].scale_x, scale_x); if (i == 0) { // Only the first op is allowed to be a scale up. // (Scaling up *after* scaling down would make it fuzzy.) EXPECT_TRUE(ops[0].scale_factor == 0 || ops[0].scale_factor == 2); } else { // All other operations must be 50% downscales. EXPECT_EQ(ops[i].scale_factor, 2); } } // Check that the scale factors make sense and add up. int tmp = dst; for (int i = static_cast<int>(ops.size() - 1); i >= 0; i--) { EXPECT_EQ(tmp, ops[i].scale_size); if (ops[i].scale_factor == 0) { EXPECT_EQ(i, 0); EXPECT_GT(tmp, src); tmp = src; } else { tmp *= ops[i].scale_factor; } } EXPECT_EQ(tmp, src); } void CheckPipeline2(int xsize, int ysize, int dst_xsize, int dst_ysize, const std::string& description) { std::vector<GLHelperScaling::ScalerStage> stages; helper_scaling_->ConvertScalerOpsToScalerStages( content::GLHelper::SCALER_QUALITY_GOOD, gfx::Size(xsize, ysize), gfx::Rect(0, 0, xsize, ysize), gfx::Size(dst_xsize, dst_ysize), false, false, &x_ops_, &y_ops_, &stages); EXPECT_EQ(x_ops_.size(), 0U); EXPECT_EQ(y_ops_.size(), 0U); ValidateScalerStages(content::GLHelper::SCALER_QUALITY_GOOD, stages, gfx::Size(dst_xsize, dst_ysize), ""); EXPECT_EQ(PrintStages(stages), description); } void CheckOptimizationsTest() { // Basic upscale. X and Y should be combined into one pass. x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 2000)); y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 2000)); CheckPipeline2(1024, 768, 2000, 2000, "1024x768 -> 2000x2000 bilinear\n"); // X scaled 1/2, Y upscaled, should still be one pass. x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 512)); y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 2000)); CheckPipeline2(1024, 768, 512, 2000, "1024x768 -> 512x2000 bilinear\n"); // X upscaled, Y scaled 1/2, one bilinear pass x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 2000)); y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 384)); CheckPipeline2(1024, 768, 2000, 384, "1024x768 -> 2000x384 bilinear\n"); // X scaled 1/2, Y scaled 1/2, one bilinear pass x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 512)); y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 384)); CheckPipeline2(1024, 768, 512, 384, "1024x768 -> 512x384 bilinear\n"); // X scaled 1/2, Y scaled to 60%, one bilinear2 pass. x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 50)); y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 120)); y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 60)); CheckPipeline2(100, 100, 50, 60, "100x100 -> 50x60 bilinear2 Y\n"); // X scaled to 60%, Y scaled 1/2, one bilinear2 pass. x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 120)); x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 60)); y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 50)); CheckPipeline2(100, 100, 60, 50, "100x100 -> 60x50 bilinear2 X\n"); // X scaled to 60%, Y scaled 60%, one bilinear2x2 pass. x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 120)); x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 60)); y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 120)); y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 60)); CheckPipeline2(100, 100, 60, 60, "100x100 -> 60x60 bilinear2x2\n"); // X scaled to 40%, Y scaled 40%, two bilinear3 passes. x_ops_.push_back(GLHelperScaling::ScaleOp(3, true, 40)); y_ops_.push_back(GLHelperScaling::ScaleOp(3, false, 40)); CheckPipeline2(100, 100, 40, 40, "100x100 -> 100x40 bilinear3 Y\n" "100x40 -> 40x40 bilinear3 X\n"); // X scaled to 60%, Y scaled 40% x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 120)); x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 60)); y_ops_.push_back(GLHelperScaling::ScaleOp(3, false, 40)); CheckPipeline2(100, 100, 60, 40, "100x100 -> 100x40 bilinear3 Y\n" "100x40 -> 60x40 bilinear2 X\n"); // X scaled to 40%, Y scaled 60% x_ops_.push_back(GLHelperScaling::ScaleOp(3, true, 40)); y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 120)); y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 60)); CheckPipeline2(100, 100, 40, 60, "100x100 -> 100x60 bilinear2 Y\n" "100x60 -> 40x60 bilinear3 X\n"); // X scaled to 30%, Y scaled 30% x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 120)); x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 60)); x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 30)); y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 120)); y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 60)); y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 30)); CheckPipeline2(100, 100, 30, 30, "100x100 -> 100x30 bilinear4 Y\n" "100x30 -> 30x30 bilinear4 X\n"); // X scaled to 50%, Y scaled 30% x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 50)); y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 120)); y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 60)); y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 30)); CheckPipeline2(100, 100, 50, 30, "100x100 -> 50x30 bilinear4 Y\n"); // X scaled to 150%, Y scaled 30% // Note that we avoid combinding X and Y passes // as that would probably be LESS efficient here. x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 150)); y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 120)); y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 60)); y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 30)); CheckPipeline2(100, 100, 150, 30, "100x100 -> 100x30 bilinear4 Y\n" "100x30 -> 150x30 bilinear\n"); // X scaled to 1%, Y scaled 1% x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 128)); x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 64)); x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 32)); x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 16)); x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 8)); x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 4)); x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 2)); x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 1)); y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 128)); y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 64)); y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 32)); y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 16)); y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 8)); y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 4)); y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 2)); y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 1)); CheckPipeline2(100, 100, 1, 1, "100x100 -> 100x32 bilinear4 Y\n" "100x32 -> 100x4 bilinear4 Y\n" "100x4 -> 64x1 bilinear2x2\n" "64x1 -> 8x1 bilinear4 X\n" "8x1 -> 1x1 bilinear4 X\n"); } scoped_ptr<gpu::GLInProcessContext> context_; gpu::gles2::GLES2Interface* gl_; scoped_ptr<content::GLHelper> helper_; scoped_ptr<content::GLHelperScaling> helper_scaling_; std::deque<GLHelperScaling::ScaleOp> x_ops_, y_ops_; }; class GLHelperPixelTest : public GLHelperTest { private: gfx::DisableNullDrawGLBindings enable_pixel_output_; }; TEST_F(GLHelperTest, RGBASyncReadbackTest) { const int kTestSize = 64; bool result = TestTextureFormatReadback(gfx::Size(kTestSize, kTestSize), kRGBA_8888_SkColorType, false); EXPECT_EQ(result, true); } TEST_F(GLHelperTest, BGRASyncReadbackTest) { const int kTestSize = 64; bool result = TestTextureFormatReadback(gfx::Size(kTestSize, kTestSize), kBGRA_8888_SkColorType, false); EXPECT_EQ(result, true); } TEST_F(GLHelperTest, RGB565SyncReadbackTest) { const int kTestSize = 64; bool result = TestTextureFormatReadback(gfx::Size(kTestSize, kTestSize), kRGB_565_SkColorType, false); EXPECT_EQ(result, true); } TEST_F(GLHelperTest, RGBAASyncReadbackTest) { const int kTestSize = 64; bool result = TestTextureFormatReadback(gfx::Size(kTestSize, kTestSize), kRGBA_8888_SkColorType, true); EXPECT_EQ(result, true); } TEST_F(GLHelperTest, BGRAASyncReadbackTest) { const int kTestSize = 64; bool result = TestTextureFormatReadback(gfx::Size(kTestSize, kTestSize), kBGRA_8888_SkColorType, true); EXPECT_EQ(result, true); } TEST_F(GLHelperTest, RGB565ASyncReadbackTest) { const int kTestSize = 64; bool result = TestTextureFormatReadback(gfx::Size(kTestSize, kTestSize), kRGB_565_SkColorType, true); EXPECT_EQ(result, true); } TEST_F(GLHelperPixelTest, YUVReadbackOptTest) { // This test uses the gpu.service/gpu_decoder tracing events to detect how // many scaling passes are actually performed by the YUV readback pipeline. StartTracing(TRACE_DISABLED_BY_DEFAULT( "gpu.service") "," TRACE_DISABLED_BY_DEFAULT("gpu_decoder")); TestYUVReadback(800, 400, 800, 400, 0, 0, 1, false, true, content::GLHelper::SCALER_QUALITY_FAST); std::map<std::string, int> event_counts; EndTracing(&event_counts); int draw_buffer_calls = event_counts["kDrawBuffersEXTImmediate"]; int draw_arrays_calls = event_counts["kDrawArrays"]; VLOG(1) << "Draw buffer calls: " << draw_buffer_calls; VLOG(1) << "DrawArrays calls: " << draw_arrays_calls; if (draw_buffer_calls) { // When using MRT, the YUV readback code should only // execute two draw arrays, and scaling should be integrated // into those two calls since we are using the FAST scalign // quality. EXPECT_EQ(2, draw_arrays_calls); } else { // When not using MRT, there are three passes for the YUV, // and one for the scaling. EXPECT_EQ(4, draw_arrays_calls); } } class GLHelperPixelYuvReadback : public GLHelperPixelTest, public ::testing::WithParamInterface< std::tr1::tuple<bool, bool, unsigned int, unsigned int>> {}; int kYUVReadBackSizes[] = {2, 4, 14}; TEST_P(GLHelperPixelYuvReadback, Test) { bool flip = std::tr1::get<0>(GetParam()); bool use_mrt = std::tr1::get<1>(GetParam()); unsigned int x = std::tr1::get<2>(GetParam()); unsigned int y = std::tr1::get<3>(GetParam()); for (unsigned int ox = x; ox < arraysize(kYUVReadBackSizes); ox++) { for (unsigned int oy = y; oy < arraysize(kYUVReadBackSizes); oy++) { // If output is a subsection of the destination frame, (letterbox) // then try different variations of where the subsection goes. for (Margin xm = x < ox ? MarginLeft : MarginRight; xm <= MarginRight; xm = NextMargin(xm)) { for (Margin ym = y < oy ? MarginLeft : MarginRight; ym <= MarginRight; ym = NextMargin(ym)) { for (int pattern = 0; pattern < 3; pattern++) { TestYUVReadback( kYUVReadBackSizes[x], kYUVReadBackSizes[y], kYUVReadBackSizes[ox], kYUVReadBackSizes[oy], compute_margin(kYUVReadBackSizes[x], kYUVReadBackSizes[ox], xm), compute_margin(kYUVReadBackSizes[y], kYUVReadBackSizes[oy], ym), pattern, flip, use_mrt, content::GLHelper::SCALER_QUALITY_GOOD); if (HasFailure()) { return; } } } } } } } // First argument is intentionally empty. INSTANTIATE_TEST_CASE_P( , GLHelperPixelYuvReadback, ::testing::Combine( ::testing::Bool(), ::testing::Bool(), ::testing::Range<unsigned int>(0, arraysize(kYUVReadBackSizes)), ::testing::Range<unsigned int>(0, arraysize(kYUVReadBackSizes)))); int kRGBReadBackSizes[] = {3, 6, 16}; class GLHelperPixelReadbackTest : public GLHelperPixelTest, public ::testing::WithParamInterface<std::tr1::tuple<unsigned int, unsigned int, unsigned int, unsigned int, unsigned int>> {}; // Per pixel tests, all sizes are small so that we can print // out the generated bitmaps. TEST_P(GLHelperPixelReadbackTest, ScaleTest) { unsigned int q_index = std::tr1::get<0>(GetParam()); unsigned int x = std::tr1::get<1>(GetParam()); unsigned int y = std::tr1::get<2>(GetParam()); unsigned int dst_x = std::tr1::get<3>(GetParam()); unsigned int dst_y = std::tr1::get<4>(GetParam()); for (int flip = 0; flip <= 1; flip++) { for (int pattern = 0; pattern < 3; pattern++) { TestScale(kRGBReadBackSizes[x], kRGBReadBackSizes[y], kRGBReadBackSizes[dst_x], kRGBReadBackSizes[dst_y], pattern, q_index, flip == 1); if (HasFailure()) { return; } } } } // Per pixel tests, all sizes are small so that we can print // out the generated bitmaps. TEST_P(GLHelperPixelReadbackTest, CropScaleReadbackAndCleanTextureTest) { unsigned int q_index = std::tr1::get<0>(GetParam()); unsigned int x = std::tr1::get<1>(GetParam()); unsigned int y = std::tr1::get<2>(GetParam()); unsigned int dst_x = std::tr1::get<3>(GetParam()); unsigned int dst_y = std::tr1::get<4>(GetParam()); const SkColorType kColorTypes[] = { kAlpha_8_SkColorType, kRGBA_8888_SkColorType, kBGRA_8888_SkColorType}; for (size_t color_type = 0; color_type < arraysize(kColorTypes); color_type++) { for (int pattern = 0; pattern < 3; pattern++) { TestCropScaleReadbackAndCleanTexture( kRGBReadBackSizes[x], kRGBReadBackSizes[y], kRGBReadBackSizes[dst_x], kRGBReadBackSizes[dst_y], pattern, kColorTypes[color_type], false, q_index); if (HasFailure()) return; } } } INSTANTIATE_TEST_CASE_P( , GLHelperPixelReadbackTest, ::testing::Combine( ::testing::Range<unsigned int>(0, arraysize(kQualities)), ::testing::Range<unsigned int>(0, arraysize(kRGBReadBackSizes)), ::testing::Range<unsigned int>(0, arraysize(kRGBReadBackSizes)), ::testing::Range<unsigned int>(0, arraysize(kRGBReadBackSizes)), ::testing::Range<unsigned int>(0, arraysize(kRGBReadBackSizes)))); // Validate that all scaling generates valid pipelines. TEST_F(GLHelperTest, ValidateScalerPipelines) { int sizes[] = {7, 99, 128, 256, 512, 719, 720, 721, 1920, 2011, 3217, 4096}; for (size_t q = 0; q < arraysize(kQualities); q++) { for (size_t x = 0; x < arraysize(sizes); x++) { for (size_t y = 0; y < arraysize(sizes); y++) { for (size_t dst_x = 0; dst_x < arraysize(sizes); dst_x++) { for (size_t dst_y = 0; dst_y < arraysize(sizes); dst_y++) { TestScalerPipeline(q, sizes[x], sizes[y], sizes[dst_x], sizes[dst_y]); if (HasFailure()) { return; } } } } } } } // Make sure we don't create overly complicated pipelines // for a few common use cases. TEST_F(GLHelperTest, CheckSpecificPipelines) { // Upscale should be single pass. CheckPipeline(content::GLHelper::SCALER_QUALITY_GOOD, 1024, 700, 1280, 720, "1024x700 -> 1280x720 bilinear\n"); // Slight downscale should use BILINEAR2X2. CheckPipeline(content::GLHelper::SCALER_QUALITY_GOOD, 1280, 720, 1024, 700, "1280x720 -> 1024x700 bilinear2x2\n"); // Most common tab capture pipeline on the Pixel. // Should be using two BILINEAR3 passes. CheckPipeline(content::GLHelper::SCALER_QUALITY_GOOD, 2560, 1476, 1249, 720, "2560x1476 -> 2560x720 bilinear3 Y\n" "2560x720 -> 1249x720 bilinear3 X\n"); } TEST_F(GLHelperTest, ScalerOpTest) { for (int allow3 = 0; allow3 <= 1; allow3++) { for (int dst = 1; dst < 2049; dst += 1 + (dst >> 3)) { for (int src = 1; src < 2049; src++) { TestAddOps(src, dst, allow3 == 1, (src & 1) == 1); if (HasFailure()) { LOG(ERROR) << "Failed for src=" << src << " dst=" << dst << " allow3=" << allow3; return; } } } } } TEST_F(GLHelperTest, CheckOptimizations) { // Test in baseclass since it is friends with GLHelperScaling CheckOptimizationsTest(); } } // namespace content