// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "content/browser/loader/resource_scheduler.h" #include #include #include #include #include #include "base/macros.h" #include "base/metrics/field_trial.h" #include "base/metrics/histogram.h" #include "base/stl_util.h" #include "base/strings/string_number_conversions.h" #include "base/strings/string_piece.h" #include "base/supports_user_data.h" #include "base/time/time.h" #include "content/common/resource_messages.h" #include "content/public/browser/resource_controller.h" #include "content/public/browser/resource_request_info.h" #include "content/public/browser/resource_throttle.h" #include "net/base/host_port_pair.h" #include "net/base/load_flags.h" #include "net/base/request_priority.h" #include "net/http/http_server_properties.h" #include "net/url_request/url_request.h" #include "net/url_request/url_request_context.h" namespace content { namespace { enum StartMode { START_SYNC, START_ASYNC }; // Field trial constants const char kThrottleCoalesceFieldTrial[] = "RequestThrottlingAndCoalescing"; const char kThrottleCoalesceFieldTrialThrottle[] = "Throttle"; const char kThrottleCoalesceFieldTrialCoalesce[] = "Coalesce"; const char kRequestLimitFieldTrial[] = "OutstandingRequestLimiting"; const char kRequestLimitFieldTrialGroupPrefix[] = "Limit"; const char kResourcePrioritiesFieldTrial[] = "ResourcePriorities"; // Flags identifying various attributes of the request that are used // when making scheduling decisions. using RequestAttributes = uint8_t; const RequestAttributes kAttributeNone = 0x00; const RequestAttributes kAttributeInFlight = 0x01; const RequestAttributes kAttributeDelayable = 0x02; const RequestAttributes kAttributeLayoutBlocking = 0x04; // Post ResourceScheduler histograms of the following forms: // If |histogram_suffix| is NULL or the empty string: // ResourceScheduler.base_name.histogram_name // Else: // ResourceScheduler.base_name.histogram_name.histogram_suffix void PostHistogram(const char* base_name, const char* histogram_name, const char* histogram_suffix, base::TimeDelta time) { std::string histogram = base::StringPrintf("ResourceScheduler.%s.%s", base_name, histogram_name); if (histogram_suffix && histogram_suffix[0] != '\0') histogram = histogram + "." + histogram_suffix; base::HistogramBase* histogram_counter = base::Histogram::FactoryTimeGet( histogram, base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(5), 50, base::Histogram::kUmaTargetedHistogramFlag); histogram_counter->AddTime(time); } // For use with PostHistogram to specify the correct string for histogram // suffixes based on number of Clients. const char* GetNumClientsString(size_t num_clients) { if (num_clients == 1) return "1Client"; else if (num_clients <= 5) return "Max5Clients"; else if (num_clients <= 15) return "Max15Clients"; else if (num_clients <= 30) return "Max30Clients"; return "Over30Clients"; } } // namespace static const size_t kCoalescedTimerPeriod = 5000; static const size_t kDefaultMaxNumDelayableRequestsPerClient = 10; static const size_t kMaxNumDelayableRequestsPerHost = 6; static const size_t kMaxNumThrottledRequestsPerClient = 1; static const size_t kDefaultMaxNumDelayableWhileLayoutBlocking = 1; static const net::RequestPriority kDefaultLayoutBlockingPriorityThreshold = net::LOW; struct ResourceScheduler::RequestPriorityParams { RequestPriorityParams() : priority(net::DEFAULT_PRIORITY), intra_priority(0) { } RequestPriorityParams(net::RequestPriority priority, int intra_priority) : priority(priority), intra_priority(intra_priority) { } bool operator==(const RequestPriorityParams& other) const { return (priority == other.priority) && (intra_priority == other.intra_priority); } bool operator!=(const RequestPriorityParams& other) const { return !(*this == other); } bool GreaterThan(const RequestPriorityParams& other) const { if (priority != other.priority) return priority > other.priority; return intra_priority > other.intra_priority; } net::RequestPriority priority; int intra_priority; }; class ResourceScheduler::RequestQueue { public: typedef std::multiset NetQueue; RequestQueue() : fifo_ordering_ids_(0) {} ~RequestQueue() {} // Adds |request| to the queue with given |priority|. void Insert(ScheduledResourceRequest* request); // Removes |request| from the queue. void Erase(ScheduledResourceRequest* request) { PointerMap::iterator it = pointers_.find(request); CHECK(it != pointers_.end()); queue_.erase(it->second); pointers_.erase(it); } NetQueue::iterator GetNextHighestIterator() { return queue_.begin(); } NetQueue::iterator End() { return queue_.end(); } // Returns true if |request| is queued. bool IsQueued(ScheduledResourceRequest* request) const { return ContainsKey(pointers_, request); } // Returns true if no requests are queued. bool IsEmpty() const { return queue_.size() == 0; } private: typedef std::map PointerMap; uint32_t MakeFifoOrderingId() { fifo_ordering_ids_ += 1; return fifo_ordering_ids_; } // Used to create an ordering ID for scheduled resources so that resources // with same priority/intra_priority stay in fifo order. uint32_t fifo_ordering_ids_; NetQueue queue_; PointerMap pointers_; }; // This is the handle we return to the ResourceDispatcherHostImpl so it can // interact with the request. class ResourceScheduler::ScheduledResourceRequest : public ResourceThrottle { public: ScheduledResourceRequest(const ClientId& client_id, net::URLRequest* request, ResourceScheduler* scheduler, const RequestPriorityParams& priority, bool is_async) : client_id_(client_id), client_state_on_creation_(scheduler->GetClientState(client_id_)), request_(request), ready_(false), deferred_(false), is_async_(is_async), attributes_(kAttributeNone), scheduler_(scheduler), priority_(priority), fifo_ordering_(0), weak_ptr_factory_(this) { DCHECK(!request_->GetUserData(kUserDataKey)); request_->SetUserData(kUserDataKey, new UnownedPointer(this)); } ~ScheduledResourceRequest() override { request_->RemoveUserData(kUserDataKey); scheduler_->RemoveRequest(this); } static ScheduledResourceRequest* ForRequest(net::URLRequest* request) { return static_cast(request->GetUserData(kUserDataKey)) ->get(); } // Starts the request. If |start_mode| is START_ASYNC, the request will not // be started immediately. void Start(StartMode start_mode) { DCHECK(!ready_); // If the request was cancelled, do nothing. if (!request_->status().is_success()) return; bool was_deferred = deferred_; // If the request was deferred, need to start it. Otherwise, will just not // defer starting it in the first place, and the value of |start_mode| // makes no difference. if (deferred_) { // If can't start the request synchronously, post a task to start the // request. if (start_mode == START_ASYNC) { base::ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, base::Bind(&ScheduledResourceRequest::Start, weak_ptr_factory_.GetWeakPtr(), START_SYNC)); return; } deferred_ = false; controller()->Resume(); } ready_ = true; // The rest of this method is just collecting histograms. base::TimeTicks time = base::TimeTicks::Now(); ClientState current_state = scheduler_->GetClientState(client_id_); // Note: the client state isn't perfectly accurate since it won't capture // tabs which have switched between active and background multiple times. // Ex: A tab with the following transitions Active -> Background -> Active // will be recorded as Active. const char* client_state = "Other"; if (current_state == client_state_on_creation_ && current_state == ACTIVE) { client_state = "Active"; } else if (current_state == client_state_on_creation_ && current_state == BACKGROUND) { client_state = "Background"; } base::TimeDelta time_was_deferred = base::TimeDelta::FromMicroseconds(0); if (was_deferred) time_was_deferred = time - time_deferred_; PostHistogram("RequestTimeDeferred", client_state, NULL, time_was_deferred); PostHistogram("RequestTimeThrottled", client_state, NULL, time - request_->creation_time()); // TODO(aiolos): Remove one of the above histograms after gaining an // understanding of the difference between them and which one is more // interesting. } void set_request_priority_params(const RequestPriorityParams& priority) { priority_ = priority; } const RequestPriorityParams& get_request_priority_params() const { return priority_; } const ClientId& client_id() const { return client_id_; } net::URLRequest* url_request() { return request_; } const net::URLRequest* url_request() const { return request_; } bool is_async() const { return is_async_; } uint32_t fifo_ordering() const { return fifo_ordering_; } void set_fifo_ordering(uint32_t fifo_ordering) { fifo_ordering_ = fifo_ordering; } RequestAttributes attributes() const { return attributes_; } void set_attributes(RequestAttributes attributes) { attributes_ = attributes; } private: class UnownedPointer : public base::SupportsUserData::Data { public: explicit UnownedPointer(ScheduledResourceRequest* pointer) : pointer_(pointer) {} ScheduledResourceRequest* get() const { return pointer_; } private: ScheduledResourceRequest* const pointer_; DISALLOW_COPY_AND_ASSIGN(UnownedPointer); }; static const void* const kUserDataKey; // ResourceThrottle interface: void WillStartRequest(bool* defer) override { deferred_ = *defer = !ready_; time_deferred_ = base::TimeTicks::Now(); } const char* GetNameForLogging() const override { return "ResourceScheduler"; } const ClientId client_id_; const ResourceScheduler::ClientState client_state_on_creation_; net::URLRequest* request_; bool ready_; bool deferred_; bool is_async_; RequestAttributes attributes_; ResourceScheduler* scheduler_; RequestPriorityParams priority_; uint32_t fifo_ordering_; base::TimeTicks time_deferred_; base::WeakPtrFactory weak_ptr_factory_; DISALLOW_COPY_AND_ASSIGN(ScheduledResourceRequest); }; const void* const ResourceScheduler::ScheduledResourceRequest::kUserDataKey = &ResourceScheduler::ScheduledResourceRequest::kUserDataKey; bool ResourceScheduler::ScheduledResourceSorter::operator()( const ScheduledResourceRequest* a, const ScheduledResourceRequest* b) const { // Want the set to be ordered first by decreasing priority, then by // decreasing intra_priority. // ie. with (priority, intra_priority) // [(1, 0), (1, 0), (0, 100), (0, 0)] if (a->get_request_priority_params() != b->get_request_priority_params()) return a->get_request_priority_params().GreaterThan( b->get_request_priority_params()); // If priority/intra_priority is the same, fall back to fifo ordering. // std::multiset doesn't guarantee this until c++11. return a->fifo_ordering() < b->fifo_ordering(); } void ResourceScheduler::RequestQueue::Insert( ScheduledResourceRequest* request) { DCHECK(!ContainsKey(pointers_, request)); request->set_fifo_ordering(MakeFifoOrderingId()); pointers_[request] = queue_.insert(request); } // Each client represents a tab. class ResourceScheduler::Client { public: explicit Client(ResourceScheduler* scheduler, bool is_visible, bool is_audible) : is_audible_(is_audible), is_visible_(is_visible), is_loaded_(false), is_paused_(false), has_html_body_(false), using_spdy_proxy_(false), load_started_time_(base::TimeTicks::Now()), scheduler_(scheduler), in_flight_delayable_count_(0), total_layout_blocking_count_(0), throttle_state_(ResourceScheduler::THROTTLED) {} ~Client() { // Update to default state and pause to ensure the scheduler has a // correct count of relevant types of clients. is_visible_ = false; is_audible_ = false; is_paused_ = true; UpdateThrottleState(); } void ScheduleRequest(net::URLRequest* url_request, ScheduledResourceRequest* request) { SetRequestAttributes(request, DetermineRequestAttributes(request)); if (ShouldStartRequest(request) == START_REQUEST) { // New requests can be started synchronously without issue. StartRequest(request, START_SYNC); } else { pending_requests_.Insert(request); } } void RemoveRequest(ScheduledResourceRequest* request) { if (pending_requests_.IsQueued(request)) { pending_requests_.Erase(request); DCHECK(!ContainsKey(in_flight_requests_, request)); } else { EraseInFlightRequest(request); // Removing this request may have freed up another to load. LoadAnyStartablePendingRequests(); } } RequestSet StartAndRemoveAllRequests() { // First start any pending requests so that they will be moved into // in_flight_requests_. This may exceed the limits // kDefaultMaxNumDelayableRequestsPerClient, kMaxNumDelayableRequestsPerHost // and kMaxNumThrottledRequestsPerClient, so this method must not do // anything that depends on those limits before calling // ClearInFlightRequests() below. while (!pending_requests_.IsEmpty()) { ScheduledResourceRequest* request = *pending_requests_.GetNextHighestIterator(); pending_requests_.Erase(request); // Starting requests asynchronously ensures no side effects, and avoids // starting a bunch of requests that may be about to be deleted. StartRequest(request, START_ASYNC); } RequestSet unowned_requests; for (RequestSet::iterator it = in_flight_requests_.begin(); it != in_flight_requests_.end(); ++it) { unowned_requests.insert(*it); (*it)->set_attributes(kAttributeNone); } ClearInFlightRequests(); return unowned_requests; } bool is_active() const { return is_visible_ || is_audible_; } bool is_loaded() const { return is_loaded_; } bool is_visible() const { return is_visible_; } void OnAudibilityChanged(bool is_audible) { UpdateState(is_audible, &is_audible_); } void OnVisibilityChanged(bool is_visible) { UpdateState(is_visible, &is_visible_); } // Function to update any client state variable used to determine whether a // Client is active or background. Used for is_visible_ and is_audible_. void UpdateState(bool new_state, bool* current_state) { bool was_active = is_active(); *current_state = new_state; if (was_active == is_active()) return; last_active_switch_time_ = base::TimeTicks::Now(); UpdateThrottleState(); } void OnLoadingStateChanged(bool is_loaded) { if (is_loaded == is_loaded_) { return; } is_loaded_ = is_loaded; UpdateThrottleState(); if (!is_loaded_) { load_started_time_ = base::TimeTicks::Now(); last_active_switch_time_ = base::TimeTicks(); return; } base::TimeTicks cur_time = base::TimeTicks::Now(); const char* num_clients = GetNumClientsString(scheduler_->client_map_.size()); const char* client_catagory = "Other"; if (last_active_switch_time_.is_null()) { client_catagory = is_active() ? "Active" : "Background"; } else if (is_active()) { base::TimeDelta time_since_active = cur_time - last_active_switch_time_; PostHistogram("ClientLoadedTime", "Other.SwitchedToActive", NULL, time_since_active); PostHistogram("ClientLoadedTime", "Other.SwitchedToActive", num_clients, time_since_active); } base::TimeDelta time_since_load_started = cur_time - load_started_time_; PostHistogram("ClientLoadedTime", client_catagory, NULL, time_since_load_started); PostHistogram("ClientLoadedTime", client_catagory, num_clients, time_since_load_started); // TODO(aiolos): The above histograms will not take main resource load time // into account with PlzNavigate into account. The ResourceScheduler also // will load the main resources without a clients with the current logic. // Find a way to fix both of these issues. } void SetPaused() { is_paused_ = true; UpdateThrottleState(); } void UpdateThrottleState() { ClientThrottleState old_throttle_state = throttle_state_; if (!scheduler_->should_throttle()) { SetThrottleState(UNTHROTTLED); } else if (is_active() && !is_loaded_) { SetThrottleState(ACTIVE_AND_LOADING); } else if (is_active()) { SetThrottleState(UNTHROTTLED); } else if (is_paused_) { SetThrottleState(PAUSED); } else if (!scheduler_->active_clients_loaded()) { SetThrottleState(THROTTLED); } else if (is_loaded_ && scheduler_->should_coalesce()) { SetThrottleState(COALESCED); } else if (!is_active()) { SetThrottleState(UNTHROTTLED); } if (throttle_state_ == old_throttle_state) { return; } if (throttle_state_ == ACTIVE_AND_LOADING) { scheduler_->IncrementActiveClientsLoading(); } else if (old_throttle_state == ACTIVE_AND_LOADING) { scheduler_->DecrementActiveClientsLoading(); } if (throttle_state_ == COALESCED) { scheduler_->IncrementCoalescedClients(); } else if (old_throttle_state == COALESCED) { scheduler_->DecrementCoalescedClients(); } } void OnNavigate() { has_html_body_ = false; is_loaded_ = false; } void OnWillInsertBody() { has_html_body_ = true; LoadAnyStartablePendingRequests(); } void OnReceivedSpdyProxiedHttpResponse() { if (!using_spdy_proxy_) { using_spdy_proxy_ = true; LoadAnyStartablePendingRequests(); } } void ReprioritizeRequest(ScheduledResourceRequest* request, RequestPriorityParams old_priority_params, RequestPriorityParams new_priority_params) { request->url_request()->SetPriority(new_priority_params.priority); request->set_request_priority_params(new_priority_params); SetRequestAttributes(request, DetermineRequestAttributes(request)); if (!pending_requests_.IsQueued(request)) { DCHECK(ContainsKey(in_flight_requests_, request)); // Request has already started. return; } pending_requests_.Erase(request); pending_requests_.Insert(request); if (new_priority_params.priority > old_priority_params.priority) { // Check if this request is now able to load at its new priority. LoadAnyStartablePendingRequests(); } } // Called on Client creation, when a Client changes user observability, // possibly when all observable Clients have finished loading, and // possibly when this Client has finished loading. // State changes: // Client became observable. // any state -> UNTHROTTLED // Client is unobservable, but all observable clients finished loading. // THROTTLED -> UNTHROTTLED // Non-observable client finished loading. // THROTTLED || UNTHROTTLED -> COALESCED // Non-observable client, an observable client starts loading. // COALESCED -> THROTTLED // A COALESCED client will transition into UNTHROTTLED when the network is // woken up by a heartbeat and then transition back into COALESCED. void SetThrottleState(ResourceScheduler::ClientThrottleState throttle_state) { if (throttle_state == throttle_state_) { return; } throttle_state_ = throttle_state; if (throttle_state_ != PAUSED) { is_paused_ = false; } LoadAnyStartablePendingRequests(); // TODO(aiolos): Stop any started but not inflght requests when // switching to stricter throttle state? } ResourceScheduler::ClientThrottleState throttle_state() const { return throttle_state_; } void LoadCoalescedRequests() { if (throttle_state_ != COALESCED) { return; } if (scheduler_->active_clients_loaded()) { SetThrottleState(UNTHROTTLED); } else { SetThrottleState(THROTTLED); } LoadAnyStartablePendingRequests(); SetThrottleState(COALESCED); } private: enum ShouldStartReqResult { DO_NOT_START_REQUEST_AND_STOP_SEARCHING, DO_NOT_START_REQUEST_AND_KEEP_SEARCHING, START_REQUEST, }; void InsertInFlightRequest(ScheduledResourceRequest* request) { in_flight_requests_.insert(request); SetRequestAttributes(request, DetermineRequestAttributes(request)); } void EraseInFlightRequest(ScheduledResourceRequest* request) { size_t erased = in_flight_requests_.erase(request); DCHECK_EQ(1u, erased); // Clear any special state that we were tracking for this request. SetRequestAttributes(request, kAttributeNone); } void ClearInFlightRequests() { in_flight_requests_.clear(); in_flight_delayable_count_ = 0; total_layout_blocking_count_ = 0; } size_t CountRequestsWithAttributes( const RequestAttributes attributes, ScheduledResourceRequest* current_request) { size_t matching_request_count = 0; for (RequestSet::const_iterator it = in_flight_requests_.begin(); it != in_flight_requests_.end(); ++it) { if (RequestAttributesAreSet((*it)->attributes(), attributes)) matching_request_count++; } if (!RequestAttributesAreSet(attributes, kAttributeInFlight)) { bool current_request_is_pending = false; for (RequestQueue::NetQueue::const_iterator it = pending_requests_.GetNextHighestIterator(); it != pending_requests_.End(); ++it) { if (RequestAttributesAreSet((*it)->attributes(), attributes)) matching_request_count++; if (*it == current_request) current_request_is_pending = true; } // Account for the current request if it is not in one of the lists yet. if (current_request && !ContainsKey(in_flight_requests_, current_request) && !current_request_is_pending) { if (RequestAttributesAreSet(current_request->attributes(), attributes)) matching_request_count++; } } return matching_request_count; } bool RequestAttributesAreSet(RequestAttributes request_attributes, RequestAttributes matching_attributes) const { return (request_attributes & matching_attributes) == matching_attributes; } void SetRequestAttributes(ScheduledResourceRequest* request, RequestAttributes attributes) { RequestAttributes old_attributes = request->attributes(); if (old_attributes == attributes) return; if (RequestAttributesAreSet(old_attributes, kAttributeInFlight | kAttributeDelayable)) { in_flight_delayable_count_--; } if (RequestAttributesAreSet(old_attributes, kAttributeLayoutBlocking)) total_layout_blocking_count_--; if (RequestAttributesAreSet(attributes, kAttributeInFlight | kAttributeDelayable)) { in_flight_delayable_count_++; } if (RequestAttributesAreSet(attributes, kAttributeLayoutBlocking)) total_layout_blocking_count_++; request->set_attributes(attributes); DCHECK_EQ(CountRequestsWithAttributes( kAttributeInFlight | kAttributeDelayable, request), in_flight_delayable_count_); DCHECK_EQ(CountRequestsWithAttributes(kAttributeLayoutBlocking, request), total_layout_blocking_count_); } RequestAttributes DetermineRequestAttributes( ScheduledResourceRequest* request) { RequestAttributes attributes = kAttributeNone; if (ContainsKey(in_flight_requests_, request)) attributes |= kAttributeInFlight; if (RequestAttributesAreSet(request->attributes(), kAttributeLayoutBlocking)) { // If a request is already marked as layout-blocking make sure to keep the // attribute across redirects. attributes |= kAttributeLayoutBlocking; } else if (!has_html_body_ && request->url_request()->priority() > scheduler_->non_delayable_threshold()) { // Requests that are above the non_delayable threshold before the HTML // body has been parsed are inferred to be layout-blocking. attributes |= kAttributeLayoutBlocking; } else if (request->url_request()->priority() < scheduler_->non_delayable_threshold()) { // Resources below the non_delayable_threshold that are being requested // from a server that does not support native prioritization are // considered delayable. net::HostPortPair host_port_pair = net::HostPortPair::FromURL(request->url_request()->url()); net::HttpServerProperties& http_server_properties = *request->url_request()->context()->http_server_properties(); if (!http_server_properties.SupportsRequestPriority(host_port_pair)) attributes |= kAttributeDelayable; } return attributes; } bool ShouldKeepSearching( const net::HostPortPair& active_request_host) const { size_t same_host_count = 0; for (RequestSet::const_iterator it = in_flight_requests_.begin(); it != in_flight_requests_.end(); ++it) { net::HostPortPair host_port_pair = net::HostPortPair::FromURL((*it)->url_request()->url()); if (active_request_host.Equals(host_port_pair)) { same_host_count++; if (same_host_count >= kMaxNumDelayableRequestsPerHost) return true; } } return false; } void StartRequest(ScheduledResourceRequest* request, StartMode start_mode) { InsertInFlightRequest(request); request->Start(start_mode); } // ShouldStartRequest is the main scheduling algorithm. // // Requests are evaluated on five attributes: // // 1. Non-delayable requests: // * Synchronous requests. // * Non-HTTP[S] requests. // // 2. Requests to request-priority-capable origin servers. // // 3. High-priority requests: // * Higher priority requests (>= net::LOW). // // 4. Layout-blocking requests: // * High-priority requests (> net::LOW) initiated before the renderer has // a . // // 5. Low priority requests // // The following rules are followed: // // All types of requests: // * If an outstanding request limit is in place, only that number // of requests may be in flight for a single client at the same time. // // ACTIVE_AND_LOADING and UNTHROTTLED Clients follow these rules: // * Non-delayable, High-priority and request-priority capable requests are // issued immediately. // * Low priority requests are delayable. // * While layout-blocking requests are loading or the body tag has not // yet been parsed, limit the number of delayable requests that may be // in flight (to 1 by default, or to zero if there's an outstanding // request limit in place). // * If no high priority or layout-blocking requests are in flight, start // loading delayable requests. // * Never exceed 10 delayable requests in flight per client. // * Never exceed 6 delayable requests for a given host. // // THROTTLED Clients follow these rules: // * Non-delayable and request-priority-capable requests are issued // immediately. // * At most one non-request-priority-capable request will be issued per // THROTTLED Client // * If no high priority requests are in flight, start loading low priority // requests. // // COALESCED Clients never load requests, with the following exceptions: // * Non-delayable requests are issued imediately. // * On a (currently 5 second) heart beat, they load all requests as an // UNTHROTTLED Client, and then return to the COALESCED state. // * When an active Client makes a request, they are THROTTLED until the // active Client finishes loading. ShouldStartReqResult ShouldStartRequest( ScheduledResourceRequest* request) const { const net::URLRequest& url_request = *request->url_request(); // Syncronous requests could block the entire render, which could impact // user-observable Clients. if (!request->is_async()) return START_REQUEST; // TODO(simonjam): This may end up causing disk contention. We should // experiment with throttling if that happens. // TODO(aiolos): We probably want to Coalesce these as well to avoid // waking the disk. if (!url_request.url().SchemeIsHTTPOrHTTPS()) return START_REQUEST; if (throttle_state_ == COALESCED) return DO_NOT_START_REQUEST_AND_STOP_SEARCHING; if (using_spdy_proxy_ && url_request.url().SchemeIs(url::kHttpScheme)) return START_REQUEST; // Implementation of the kRequestLimitFieldTrial. if (scheduler_->limit_outstanding_requests() && in_flight_requests_.size() >= scheduler_->outstanding_request_limit()) { return DO_NOT_START_REQUEST_AND_STOP_SEARCHING; } net::HostPortPair host_port_pair = net::HostPortPair::FromURL(url_request.url()); net::HttpServerProperties& http_server_properties = *url_request.context()->http_server_properties(); // TODO(willchan): We should really improve this algorithm as described in // crbug.com/164101. Also, theoretically we should not count a // request-priority capable request against the delayable requests limit. if (http_server_properties.SupportsRequestPriority(host_port_pair)) return START_REQUEST; if (throttle_state_ == THROTTLED && in_flight_requests_.size() >= kMaxNumThrottledRequestsPerClient) { // There may still be request-priority-capable requests that should be // issued. return DO_NOT_START_REQUEST_AND_KEEP_SEARCHING; } // Non-delayable requests. if (!RequestAttributesAreSet(request->attributes(), kAttributeDelayable)) return START_REQUEST; if (in_flight_delayable_count_ >= scheduler_->max_num_delayable_requests()) { return DO_NOT_START_REQUEST_AND_STOP_SEARCHING; } if (ShouldKeepSearching(host_port_pair)) { // There may be other requests for other hosts that may be allowed, // so keep checking. return DO_NOT_START_REQUEST_AND_KEEP_SEARCHING; } // The in-flight requests consist of layout-blocking requests, // normal requests and delayable requests. Everything except for // delayable requests is handled above here so this is deciding what to // do with a delayable request while we are in the layout-blocking phase // of loading. if (!has_html_body_ || total_layout_blocking_count_ != 0) { size_t non_delayable_requests_in_flight_count = in_flight_requests_.size() - in_flight_delayable_count_; if (scheduler_->enable_in_flight_non_delayable_threshold()) { if (non_delayable_requests_in_flight_count > scheduler_->in_flight_non_delayable_threshold()) { // Too many higher priority in-flight requests to allow lower priority // requests through. return DO_NOT_START_REQUEST_AND_STOP_SEARCHING; } if (in_flight_requests_.size() > 0 && (scheduler_->limit_outstanding_requests() || in_flight_delayable_count_ >= scheduler_->max_num_delayable_while_layout_blocking())) { // Block the request if at least one request is in flight and the // number of in-flight delayable requests has hit the configured // limit. return DO_NOT_START_REQUEST_AND_STOP_SEARCHING; } } else if (non_delayable_requests_in_flight_count > 0 && (scheduler_->limit_outstanding_requests() || in_flight_delayable_count_ >= scheduler_->max_num_delayable_while_layout_blocking())) { // If there are no high-priority requests in flight the floodgates open. // If there are high-priority requests in-flight then limit the number // of lower-priority requests (or zero if a limit field trial is // active). return DO_NOT_START_REQUEST_AND_STOP_SEARCHING; } } return START_REQUEST; } void LoadAnyStartablePendingRequests() { // We iterate through all the pending requests, starting with the highest // priority one. For each entry, one of three things can happen: // 1) We start the request, remove it from the list, and keep checking. // 2) We do NOT start the request, but ShouldStartRequest() signals us that // there may be room for other requests, so we keep checking and leave // the previous request still in the list. // 3) We do not start the request, same as above, but StartRequest() tells // us there's no point in checking any further requests. RequestQueue::NetQueue::iterator request_iter = pending_requests_.GetNextHighestIterator(); while (request_iter != pending_requests_.End()) { ScheduledResourceRequest* request = *request_iter; ShouldStartReqResult query_result = ShouldStartRequest(request); if (query_result == START_REQUEST) { pending_requests_.Erase(request); StartRequest(request, START_ASYNC); // StartRequest can modify the pending list, so we (re)start evaluation // from the currently highest priority request. Avoid copying a singular // iterator, which would trigger undefined behavior. if (pending_requests_.GetNextHighestIterator() == pending_requests_.End()) break; request_iter = pending_requests_.GetNextHighestIterator(); } else if (query_result == DO_NOT_START_REQUEST_AND_KEEP_SEARCHING) { ++request_iter; continue; } else { DCHECK(query_result == DO_NOT_START_REQUEST_AND_STOP_SEARCHING); break; } } } bool is_audible_; bool is_visible_; bool is_loaded_; bool is_paused_; // Tracks if the main HTML parser has reached the body which marks the end of // layout-blocking resources. bool has_html_body_; bool using_spdy_proxy_; RequestQueue pending_requests_; RequestSet in_flight_requests_; base::TimeTicks load_started_time_; // The last time the client switched state between active and background. base::TimeTicks last_active_switch_time_; ResourceScheduler* scheduler_; // The number of delayable in-flight requests. size_t in_flight_delayable_count_; // The number of layout-blocking in-flight requests. size_t total_layout_blocking_count_; ResourceScheduler::ClientThrottleState throttle_state_; }; ResourceScheduler::ResourceScheduler() : should_coalesce_(false), should_throttle_(false), active_clients_loading_(0), coalesced_clients_(0), limit_outstanding_requests_(false), outstanding_request_limit_(0), non_delayable_threshold_( kDefaultLayoutBlockingPriorityThreshold), enable_in_flight_non_delayable_threshold_(false), in_flight_non_delayable_threshold_(0), max_num_delayable_while_layout_blocking_( kDefaultMaxNumDelayableWhileLayoutBlocking), max_num_delayable_requests_(kDefaultMaxNumDelayableRequestsPerClient), coalescing_timer_(new base::Timer(true /* retain_user_task */, true /* is_repeating */)) { std::string throttling_trial_group = base::FieldTrialList::FindFullName(kThrottleCoalesceFieldTrial); if (throttling_trial_group == kThrottleCoalesceFieldTrialThrottle) { should_throttle_ = true; } else if (throttling_trial_group == kThrottleCoalesceFieldTrialCoalesce) { should_coalesce_ = true; should_throttle_ = true; } std::string outstanding_limit_trial_group = base::FieldTrialList::FindFullName(kRequestLimitFieldTrial); std::vector split_group( base::SplitString(outstanding_limit_trial_group, "=", base::KEEP_WHITESPACE, base::SPLIT_WANT_ALL)); int outstanding_limit = 0; if (split_group.size() == 2 && split_group[0] == kRequestLimitFieldTrialGroupPrefix && base::StringToInt(split_group[1], &outstanding_limit) && outstanding_limit > 0) { limit_outstanding_requests_ = true; outstanding_request_limit_ = outstanding_limit; } // Set up the ResourceScheduling field trial options. // The field trial parameters are also encoded into the group name since // the variations component is not available from here and plumbing the // options through the code is overkill for a short experiment. // // The group name encoding looks like this: // _ABCDE_E2_F_G // A - fetchDeferLateScripts (1 for true, 0 for false) // B - fetchIncreaseFontPriority (1 for true, 0 for false) // C - fetchIncreaseAsyncScriptPriority (1 for true, 0 for false) // D - fetchIncreasePriorities (1 for true, 0 for false) // E - fetchEnableLayoutBlockingThreshold (1 for true, 0 for false) // E2 - fetchLayoutBlockingThreshold (Numeric) // F - fetchMaxNumDelayableWhileLayoutBlocking (Numeric) // G - fetchMaxNumDelayableRequests (Numeric) std::string resource_priorities_trial_group = base::FieldTrialList::FindFullName(kResourcePrioritiesFieldTrial); std::vector resource_priorities_split_group( base::SplitString(resource_priorities_trial_group, "_", base::KEEP_WHITESPACE, base::SPLIT_WANT_ALL)); if (resource_priorities_split_group.size() == 5 && resource_priorities_split_group[1].length() == 5) { // fetchIncreasePriorities if (resource_priorities_split_group[1].at(3) == '1') non_delayable_threshold_ = net::MEDIUM; enable_in_flight_non_delayable_threshold_ = resource_priorities_split_group[1].at(4) == '1'; size_t numeric_value = 0; if (base::StringToSizeT(resource_priorities_split_group[2], &numeric_value)) in_flight_non_delayable_threshold_ = numeric_value; if (base::StringToSizeT(resource_priorities_split_group[3], &numeric_value)) max_num_delayable_while_layout_blocking_ = numeric_value; if (base::StringToSizeT(resource_priorities_split_group[4], &numeric_value)) max_num_delayable_requests_ = numeric_value; } } ResourceScheduler::~ResourceScheduler() { DCHECK(unowned_requests_.empty()); DCHECK(client_map_.empty()); } void ResourceScheduler::SetThrottleOptionsForTesting(bool should_throttle, bool should_coalesce) { should_coalesce_ = should_coalesce; should_throttle_ = should_throttle; OnLoadingActiveClientsStateChangedForAllClients(); } ResourceScheduler::ClientThrottleState ResourceScheduler::GetClientStateForTesting(int child_id, int route_id) { Client* client = GetClient(child_id, route_id); DCHECK(client); return client->throttle_state(); } scoped_ptr ResourceScheduler::ScheduleRequest( int child_id, int route_id, bool is_async, net::URLRequest* url_request) { DCHECK(CalledOnValidThread()); ClientId client_id = MakeClientId(child_id, route_id); scoped_ptr request(new ScheduledResourceRequest( client_id, url_request, this, RequestPriorityParams(url_request->priority(), 0), is_async)); ClientMap::iterator it = client_map_.find(client_id); if (it == client_map_.end()) { // There are several ways this could happen: // 1. requests don't have a route_id. // 2. Most unittests don't send the IPCs needed to register Clients. // 3. The tab is closed while a RequestResource IPC is in flight. unowned_requests_.insert(request.get()); request->Start(START_SYNC); return std::move(request); } Client* client = it->second; client->ScheduleRequest(url_request, request.get()); return std::move(request); } void ResourceScheduler::RemoveRequest(ScheduledResourceRequest* request) { DCHECK(CalledOnValidThread()); if (ContainsKey(unowned_requests_, request)) { unowned_requests_.erase(request); return; } ClientMap::iterator client_it = client_map_.find(request->client_id()); if (client_it == client_map_.end()) { return; } Client* client = client_it->second; client->RemoveRequest(request); } void ResourceScheduler::OnClientCreated(int child_id, int route_id, bool is_visible, bool is_audible) { DCHECK(CalledOnValidThread()); ClientId client_id = MakeClientId(child_id, route_id); DCHECK(!ContainsKey(client_map_, client_id)); Client* client = new Client(this, is_visible, is_audible); client_map_[client_id] = client; client->UpdateThrottleState(); } void ResourceScheduler::OnClientDeleted(int child_id, int route_id) { DCHECK(CalledOnValidThread()); ClientId client_id = MakeClientId(child_id, route_id); ClientMap::iterator it = client_map_.find(client_id); DCHECK(it != client_map_.end()); Client* client = it->second; // ResourceDispatcherHost cancels all requests except for cross-renderer // navigations, async revalidations and detachable requests after // OnClientDeleted() returns. RequestSet client_unowned_requests = client->StartAndRemoveAllRequests(); for (RequestSet::iterator it = client_unowned_requests.begin(); it != client_unowned_requests.end(); ++it) { unowned_requests_.insert(*it); } delete client; client_map_.erase(it); } void ResourceScheduler::OnLoadingStateChanged(int child_id, int route_id, bool is_loaded) { Client* client = GetClient(child_id, route_id); DCHECK(client); client->OnLoadingStateChanged(is_loaded); } void ResourceScheduler::OnVisibilityChanged(int child_id, int route_id, bool is_visible) { Client* client = GetClient(child_id, route_id); DCHECK(client); client->OnVisibilityChanged(is_visible); } void ResourceScheduler::OnAudibilityChanged(int child_id, int route_id, bool is_audible) { Client* client = GetClient(child_id, route_id); // We might get this call after the client has been deleted. if (client) client->OnAudibilityChanged(is_audible); } void ResourceScheduler::OnNavigate(int child_id, int route_id) { DCHECK(CalledOnValidThread()); ClientId client_id = MakeClientId(child_id, route_id); ClientMap::iterator it = client_map_.find(client_id); if (it == client_map_.end()) { // The client was likely deleted shortly before we received this IPC. return; } Client* client = it->second; client->OnNavigate(); } void ResourceScheduler::OnWillInsertBody(int child_id, int route_id) { DCHECK(CalledOnValidThread()); ClientId client_id = MakeClientId(child_id, route_id); ClientMap::iterator it = client_map_.find(client_id); if (it == client_map_.end()) { // The client was likely deleted shortly before we received this IPC. return; } Client* client = it->second; client->OnWillInsertBody(); } void ResourceScheduler::OnReceivedSpdyProxiedHttpResponse( int child_id, int route_id) { DCHECK(CalledOnValidThread()); ClientId client_id = MakeClientId(child_id, route_id); ClientMap::iterator client_it = client_map_.find(client_id); if (client_it == client_map_.end()) { return; } Client* client = client_it->second; client->OnReceivedSpdyProxiedHttpResponse(); } bool ResourceScheduler::IsClientVisibleForTesting(int child_id, int route_id) { Client* client = GetClient(child_id, route_id); DCHECK(client); return client->is_visible(); } bool ResourceScheduler::HasLoadingClients() const { for (const auto& client : client_map_) { if (!client.second->is_loaded()) return true; } return false; } ResourceScheduler::Client* ResourceScheduler::GetClient(int child_id, int route_id) { ClientId client_id = MakeClientId(child_id, route_id); ClientMap::iterator client_it = client_map_.find(client_id); if (client_it == client_map_.end()) { return NULL; } return client_it->second; } void ResourceScheduler::DecrementActiveClientsLoading() { DCHECK_NE(0u, active_clients_loading_); --active_clients_loading_; DCHECK_EQ(active_clients_loading_, CountActiveClientsLoading()); if (active_clients_loading_ == 0) { OnLoadingActiveClientsStateChangedForAllClients(); } } void ResourceScheduler::IncrementActiveClientsLoading() { ++active_clients_loading_; DCHECK_EQ(active_clients_loading_, CountActiveClientsLoading()); if (active_clients_loading_ == 1) { OnLoadingActiveClientsStateChangedForAllClients(); } } void ResourceScheduler::OnLoadingActiveClientsStateChangedForAllClients() { ClientMap::iterator client_it = client_map_.begin(); while (client_it != client_map_.end()) { Client* client = client_it->second; client->UpdateThrottleState(); ++client_it; } } size_t ResourceScheduler::CountActiveClientsLoading() const { size_t active_and_loading = 0; ClientMap::const_iterator client_it = client_map_.begin(); while (client_it != client_map_.end()) { Client* client = client_it->second; if (client->throttle_state() == ACTIVE_AND_LOADING) { ++active_and_loading; } ++client_it; } return active_and_loading; } void ResourceScheduler::IncrementCoalescedClients() { ++coalesced_clients_; DCHECK(should_coalesce_); DCHECK_EQ(coalesced_clients_, CountCoalescedClients()); if (coalesced_clients_ == 1) { coalescing_timer_->Start( FROM_HERE, base::TimeDelta::FromMilliseconds(kCoalescedTimerPeriod), base::Bind(&ResourceScheduler::LoadCoalescedRequests, base::Unretained(this))); } } void ResourceScheduler::DecrementCoalescedClients() { DCHECK(should_coalesce_); DCHECK_NE(0U, coalesced_clients_); --coalesced_clients_; DCHECK_EQ(coalesced_clients_, CountCoalescedClients()); if (coalesced_clients_ == 0) { coalescing_timer_->Stop(); } } size_t ResourceScheduler::CountCoalescedClients() const { DCHECK(should_coalesce_); size_t coalesced_clients = 0; ClientMap::const_iterator client_it = client_map_.begin(); while (client_it != client_map_.end()) { Client* client = client_it->second; if (client->throttle_state() == COALESCED) { ++coalesced_clients; } ++client_it; } return coalesced_clients_; } void ResourceScheduler::LoadCoalescedRequests() { DCHECK(should_coalesce_); ClientMap::iterator client_it = client_map_.begin(); while (client_it != client_map_.end()) { Client* client = client_it->second; client->LoadCoalescedRequests(); ++client_it; } } ResourceScheduler::ClientState ResourceScheduler::GetClientState( ClientId client_id) const { ClientMap::const_iterator client_it = client_map_.find(client_id); if (client_it == client_map_.end()) return UNKNOWN; return client_it->second->is_active() ? ACTIVE : BACKGROUND; } void ResourceScheduler::ReprioritizeRequest(net::URLRequest* request, net::RequestPriority new_priority, int new_intra_priority_value) { if (request->load_flags() & net::LOAD_IGNORE_LIMITS) { // Requests with the IGNORE_LIMITS flag must stay at MAXIMUM_PRIORITY. return; } auto* scheduled_resource_request = ScheduledResourceRequest::ForRequest(request); // Downloads don't use the resource scheduler. if (!scheduled_resource_request) { request->SetPriority(new_priority); return; } RequestPriorityParams new_priority_params(new_priority, new_intra_priority_value); RequestPriorityParams old_priority_params = scheduled_resource_request->get_request_priority_params(); if (old_priority_params == new_priority_params) return; ClientMap::iterator client_it = client_map_.find(scheduled_resource_request->client_id()); if (client_it == client_map_.end()) { // The client was likely deleted shortly before we received this IPC. request->SetPriority(new_priority_params.priority); scheduled_resource_request->set_request_priority_params( new_priority_params); return; } Client* client = client_it->second; client->ReprioritizeRequest(scheduled_resource_request, old_priority_params, new_priority_params); } ResourceScheduler::ClientId ResourceScheduler::MakeClientId( int child_id, int route_id) { return (static_cast(child_id) << 32) | route_id; } } // namespace content