// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/at_exit.h" #include "base/bind.h" #include "base/command_line.h" #include "base/file_util.h" #include "base/files/memory_mapped_file.h" #include "base/memory/scoped_vector.h" #include "base/numerics/safe_conversions.h" #include "base/process/process.h" #include "base/strings/string_number_conversions.h" #include "base/strings/string_split.h" #include "base/time/time.h" #include "content/common/gpu/media/v4l2_video_encode_accelerator.h" #include "content/common/gpu/media/video_accelerator_unittest_helpers.h" #include "media/base/bind_to_current_loop.h" #include "media/base/bitstream_buffer.h" #include "media/base/test_data_util.h" #include "media/filters/h264_parser.h" #include "media/video/video_encode_accelerator.h" #include "testing/gtest/include/gtest/gtest.h" using media::VideoEncodeAccelerator; namespace content { namespace { const media::VideoFrame::Format kInputFormat = media::VideoFrame::I420; // Arbitrarily chosen to add some depth to the pipeline. const unsigned int kNumOutputBuffers = 4; const unsigned int kNumExtraInputFrames = 4; // Maximum delay between requesting a keyframe and receiving one, in frames. // Arbitrarily chosen as a reasonable requirement. const unsigned int kMaxKeyframeDelay = 4; // Value to use as max frame number for keyframe detection. const unsigned int kMaxFrameNum = std::numeric_limits::max() - kMaxKeyframeDelay; // Default initial bitrate. const uint32 kDefaultBitrate = 2000000; // Default ratio of requested_subsequent_bitrate to initial_bitrate // (see test parameters below) if one is not provided. const double kDefaultSubsequentBitrateRatio = 2.0; // Default initial framerate. const uint32 kDefaultFramerate = 30; // Default ratio of requested_subsequent_framerate to initial_framerate // (see test parameters below) if one is not provided. const double kDefaultSubsequentFramerateRatio = 0.1; // Tolerance factor for how encoded bitrate can differ from requested bitrate. const double kBitrateTolerance = 0.1; // Minimum required FPS throughput for the basic performance test. const uint32 kMinPerfFPS = 30; // Minimum (arbitrary) number of frames required to enforce bitrate requirements // over. Streams shorter than this may be too short to realistically require // an encoder to be able to converge to the requested bitrate over. // The input stream will be looped as many times as needed in bitrate tests // to reach at least this number of frames before calculating final bitrate. const unsigned int kMinFramesForBitrateTests = 300; // The syntax of multiple test streams is: // test-stream1;test-stream2;test-stream3 // The syntax of each test stream is: // "in_filename:width:height:out_filename:requested_bitrate:requested_framerate // :requested_subsequent_bitrate:requested_subsequent_framerate" // - |in_filename| must be an I420 (YUV planar) raw stream // (see http://www.fourcc.org/yuv.php#IYUV). // - |width| and |height| are in pixels. // - |profile| to encode into (values of media::VideoCodecProfile). // - |out_filename| filename to save the encoded stream to (optional). // Output stream is saved for the simple encode test only. // Further parameters are optional (need to provide preceding positional // parameters if a specific subsequent parameter is required): // - |requested_bitrate| requested bitrate in bits per second. // - |requested_framerate| requested initial framerate. // - |requested_subsequent_bitrate| bitrate to switch to in the middle of the // stream. // - |requested_subsequent_framerate| framerate to switch to in the middle // of the stream. // Bitrate is only forced for tests that test bitrate. const char* g_default_in_filename = "bear_320x192_40frames.yuv"; const char* g_default_in_parameters = ":320:192:1:out.h264:200000"; base::FilePath::StringType* g_test_stream_data; struct TestStream { TestStream() : requested_bitrate(0), requested_framerate(0), requested_subsequent_bitrate(0), requested_subsequent_framerate(0) {} ~TestStream() {} gfx::Size size; base::MemoryMappedFile input_file; media::VideoCodecProfile requested_profile; std::string out_filename; unsigned int requested_bitrate; unsigned int requested_framerate; unsigned int requested_subsequent_bitrate; unsigned int requested_subsequent_framerate; }; // Parse |data| into its constituent parts, set the various output fields // accordingly, read in video stream, and store them to |test_streams|. static void ParseAndReadTestStreamData(const base::FilePath::StringType& data, ScopedVector* test_streams) { // Split the string to individual test stream data. std::vector test_streams_data; base::SplitString(data, ';', &test_streams_data); CHECK_GE(test_streams_data.size(), 1U) << data; // Parse each test stream data and read the input file. for (size_t index = 0; index < test_streams_data.size(); ++index) { std::vector fields; base::SplitString(test_streams_data[index], ':', &fields); CHECK_GE(fields.size(), 4U) << data; CHECK_LE(fields.size(), 9U) << data; TestStream* test_stream = new TestStream(); base::FilePath::StringType filename = fields[0]; int width, height; CHECK(base::StringToInt(fields[1], &width)); CHECK(base::StringToInt(fields[2], &height)); test_stream->size = gfx::Size(width, height); CHECK(!test_stream->size.IsEmpty()); int profile; CHECK(base::StringToInt(fields[3], &profile)); CHECK_GT(profile, media::VIDEO_CODEC_PROFILE_UNKNOWN); CHECK_LE(profile, media::VIDEO_CODEC_PROFILE_MAX); test_stream->requested_profile = static_cast(profile); if (fields.size() >= 5 && !fields[4].empty()) test_stream->out_filename = fields[4]; if (fields.size() >= 6 && !fields[5].empty()) CHECK(base::StringToUint(fields[5], &test_stream->requested_bitrate)); if (fields.size() >= 7 && !fields[6].empty()) CHECK(base::StringToUint(fields[6], &test_stream->requested_framerate)); if (fields.size() >= 8 && !fields[7].empty()) { CHECK(base::StringToUint(fields[7], &test_stream->requested_subsequent_bitrate)); } if (fields.size() >= 9 && !fields[8].empty()) { CHECK(base::StringToUint(fields[8], &test_stream->requested_subsequent_framerate)); } CHECK(test_stream->input_file.Initialize(base::FilePath(filename))); test_streams->push_back(test_stream); } } // Set default parameters of |test_streams| and update the parameters according // to |mid_stream_bitrate_switch| and |mid_stream_framerate_switch|. static void UpdateTestStreamData(bool mid_stream_bitrate_switch, bool mid_stream_framerate_switch, ScopedVector* test_streams) { for (size_t i = 0; i < test_streams->size(); i++) { TestStream* test_stream = (*test_streams)[i]; // Use defaults for bitrate/framerate if they are not provided. if (test_stream->requested_bitrate == 0) test_stream->requested_bitrate = kDefaultBitrate; if (test_stream->requested_framerate == 0) test_stream->requested_framerate = kDefaultFramerate; // If bitrate/framerate switch is requested, use the subsequent values if // provided, or, if not, calculate them from their initial values using // the default ratios. // Otherwise, if a switch is not requested, keep the initial values. if (mid_stream_bitrate_switch) { if (test_stream->requested_subsequent_bitrate == 0) { test_stream->requested_subsequent_bitrate = test_stream->requested_bitrate * kDefaultSubsequentBitrateRatio; } } else { test_stream->requested_subsequent_bitrate = test_stream->requested_bitrate; } if (test_stream->requested_subsequent_bitrate == 0) test_stream->requested_subsequent_bitrate = 1; if (mid_stream_framerate_switch) { if (test_stream->requested_subsequent_framerate == 0) { test_stream->requested_subsequent_framerate = test_stream->requested_framerate * kDefaultSubsequentFramerateRatio; } } else { test_stream->requested_subsequent_framerate = test_stream->requested_framerate; } if (test_stream->requested_subsequent_framerate == 0) test_stream->requested_subsequent_framerate = 1; } } enum ClientState { CS_CREATED, CS_ENCODER_SET, CS_INITIALIZED, CS_ENCODING, CS_FINISHED, CS_ERROR, }; // Performs basic, codec-specific sanity checks on the stream buffers passed // to ProcessStreamBuffer(): whether we've seen keyframes before non-keyframes, // correct sequences of H.264 NALUs (SPS before PPS and before slices), etc. // Calls given FrameFoundCallback when a complete frame is found while // processing. class StreamValidator { public: // To be called when a complete frame is found while processing a stream // buffer, passing true if the frame is a keyframe. Returns false if we // are not interested in more frames and further processing should be aborted. typedef base::Callback FrameFoundCallback; virtual ~StreamValidator() {} // Provide a StreamValidator instance for the given |profile|. static scoped_ptr Create(media::VideoCodecProfile profile, const FrameFoundCallback& frame_cb); // Process and verify contents of a bitstream buffer. virtual void ProcessStreamBuffer(const uint8* stream, size_t size) = 0; protected: explicit StreamValidator(const FrameFoundCallback& frame_cb) : frame_cb_(frame_cb) {} FrameFoundCallback frame_cb_; }; class H264Validator : public StreamValidator { public: explicit H264Validator(const FrameFoundCallback& frame_cb) : StreamValidator(frame_cb), seen_sps_(false), seen_pps_(false), seen_idr_(false) {} void ProcessStreamBuffer(const uint8* stream, size_t size) OVERRIDE; private: // Set to true when encoder provides us with the corresponding NALU type. bool seen_sps_; bool seen_pps_; bool seen_idr_; }; void H264Validator::ProcessStreamBuffer(const uint8* stream, size_t size) { media::H264Parser h264_parser; h264_parser.SetStream(stream, size); while (1) { media::H264NALU nalu; media::H264Parser::Result result; result = h264_parser.AdvanceToNextNALU(&nalu); if (result == media::H264Parser::kEOStream) break; ASSERT_EQ(result, media::H264Parser::kOk); bool keyframe = false; switch (nalu.nal_unit_type) { case media::H264NALU::kIDRSlice: ASSERT_TRUE(seen_sps_); ASSERT_TRUE(seen_pps_); seen_idr_ = keyframe = true; // fallthrough case media::H264NALU::kNonIDRSlice: ASSERT_TRUE(seen_idr_); if (!frame_cb_.Run(keyframe)) return; break; case media::H264NALU::kSPS: seen_sps_ = true; break; case media::H264NALU::kPPS: ASSERT_TRUE(seen_sps_); seen_pps_ = true; break; default: break; } } } class VP8Validator : public StreamValidator { public: explicit VP8Validator(const FrameFoundCallback& frame_cb) : StreamValidator(frame_cb), seen_keyframe_(false) {} void ProcessStreamBuffer(const uint8* stream, size_t size) OVERRIDE; private: // Have we already got a keyframe in the stream? bool seen_keyframe_; }; void VP8Validator::ProcessStreamBuffer(const uint8* stream, size_t size) { bool keyframe = !(stream[0] & 0x01); if (keyframe) seen_keyframe_ = true; EXPECT_TRUE(seen_keyframe_); frame_cb_.Run(keyframe); // TODO(posciak): We could be getting more frames in the buffer, but there is // no simple way to detect this. We'd need to parse the frames and go through // partition numbers/sizes. For now assume one frame per buffer. } // static scoped_ptr StreamValidator::Create( media::VideoCodecProfile profile, const FrameFoundCallback& frame_cb) { scoped_ptr validator; if (profile >= media::H264PROFILE_MIN && profile <= media::H264PROFILE_MAX) { validator.reset(new H264Validator(frame_cb)); } else if (profile >= media::VP8PROFILE_MIN && profile <= media::VP8PROFILE_MAX) { validator.reset(new VP8Validator(frame_cb)); } else { LOG(FATAL) << "Unsupported profile: " << profile; } return validator.Pass(); } class VEAClient : public VideoEncodeAccelerator::Client { public: VEAClient(const TestStream& test_stream, ClientStateNotification* note, bool save_to_file, unsigned int keyframe_period, bool force_bitrate, bool test_perf); virtual ~VEAClient(); void CreateEncoder(); void DestroyEncoder(); // Return the number of encoded frames per second. double frames_per_second(); // VideoDecodeAccelerator::Client implementation. void RequireBitstreamBuffers(unsigned int input_count, const gfx::Size& input_coded_size, size_t output_buffer_size) OVERRIDE; void BitstreamBufferReady(int32 bitstream_buffer_id, size_t payload_size, bool key_frame) OVERRIDE; void NotifyError(VideoEncodeAccelerator::Error error) OVERRIDE; private: bool has_encoder() { return encoder_.get(); } void SetState(ClientState new_state); // Set current stream parameters to given |bitrate| at |framerate|. void SetStreamParameters(unsigned int bitrate, unsigned int framerate); // Called when encoder is done with a VideoFrame. void InputNoLongerNeededCallback(int32 input_id); // Ensure encoder has at least as many inputs as it asked for // via RequireBitstreamBuffers(). void FeedEncoderWithInputs(); // Provide the encoder with a new output buffer. void FeedEncoderWithOutput(base::SharedMemory* shm); // Called on finding a complete frame (with |keyframe| set to true for // keyframes) in the stream, to perform codec-independent, per-frame checks // and accounting. Returns false once we have collected all frames we needed. bool HandleEncodedFrame(bool keyframe); // Verify that stream bitrate has been close to current_requested_bitrate_, // assuming current_framerate_ since the last time VerifyStreamProperties() // was called. Fail the test if |force_bitrate_| is true and the bitrate // is not within kBitrateTolerance. void VerifyStreamProperties(); // Test codec performance, failing the test if we are currently running // the performance test. void VerifyPerf(); // Prepare and return a frame wrapping the data at |position| bytes in // the input stream, ready to be sent to encoder. scoped_refptr PrepareInputFrame(off_t position); ClientState state_; scoped_ptr encoder_; const TestStream& test_stream_; // Used to notify another thread about the state. VEAClient does not own this. ClientStateNotification* note_; // Ids assigned to VideoFrames (start at 1 for easy comparison with // num_encoded_frames_). std::set inputs_at_client_; int32 next_input_id_; // Ids for output BitstreamBuffers. typedef std::map IdToSHM; ScopedVector output_shms_; IdToSHM output_buffers_at_client_; int32 next_output_buffer_id_; // Current offset into input stream. off_t pos_in_input_stream_; // Byte size of an input frame. size_t input_buffer_size_; gfx::Size input_coded_size_; // Requested by encoder. unsigned int num_required_input_buffers_; size_t output_buffer_size_; // Precalculated number of frames in the stream. unsigned int num_frames_in_stream_; // Number of frames to encode. This may differ from num_frames_in_stream_ if // we need more frames for bitrate tests. unsigned int num_frames_to_encode_; // Number of encoded frames we've got from the encoder thus far. unsigned int num_encoded_frames_; // Frames since last bitrate verification. unsigned int num_frames_since_last_check_; // True if received a keyframe while processing current bitstream buffer. bool seen_keyframe_in_this_buffer_; // True if we are to save the encoded stream to a file. bool save_to_file_; // Request a keyframe every keyframe_period_ frames. const unsigned int keyframe_period_; // Frame number for which we requested a keyframe. unsigned int keyframe_requested_at_; // True if we are asking encoder for a particular bitrate. bool force_bitrate_; // Current requested bitrate. unsigned int current_requested_bitrate_; // Current expected framerate. unsigned int current_framerate_; // Byte size of the encoded stream (for bitrate calculation) since last // time we checked bitrate. size_t encoded_stream_size_since_last_check_; // If true, verify performance at the end of the test. bool test_perf_; scoped_ptr validator_; // The time when the encoding started. base::TimeTicks encode_start_time_; // The time when the last encoded frame is ready. base::TimeTicks last_frame_ready_time_; // All methods of this class should be run on the same thread. base::ThreadChecker thread_checker_; }; VEAClient::VEAClient(const TestStream& test_stream, ClientStateNotification* note, bool save_to_file, unsigned int keyframe_period, bool force_bitrate, bool test_perf) : state_(CS_CREATED), test_stream_(test_stream), note_(note), next_input_id_(1), next_output_buffer_id_(0), pos_in_input_stream_(0), input_buffer_size_(0), num_required_input_buffers_(0), output_buffer_size_(0), num_frames_in_stream_(0), num_frames_to_encode_(0), num_encoded_frames_(0), num_frames_since_last_check_(0), seen_keyframe_in_this_buffer_(false), save_to_file_(save_to_file), keyframe_period_(keyframe_period), keyframe_requested_at_(kMaxFrameNum), force_bitrate_(force_bitrate), current_requested_bitrate_(0), current_framerate_(0), encoded_stream_size_since_last_check_(0), test_perf_(test_perf) { if (keyframe_period_) CHECK_LT(kMaxKeyframeDelay, keyframe_period_); validator_ = StreamValidator::Create( test_stream_.requested_profile, base::Bind(&VEAClient::HandleEncodedFrame, base::Unretained(this))); CHECK(validator_.get()); if (save_to_file_) { CHECK(!test_stream_.out_filename.empty()); base::FilePath out_filename(test_stream_.out_filename); // This creates or truncates out_filename. // Without it, AppendToFile() will not work. EXPECT_EQ(0, base::WriteFile(out_filename, NULL, 0)); } input_buffer_size_ = media::VideoFrame::AllocationSize(kInputFormat, test_stream.size); CHECK_GT(input_buffer_size_, 0UL); // Calculate the number of frames in the input stream by dividing its length // in bytes by frame size in bytes. CHECK_EQ(test_stream_.input_file.length() % input_buffer_size_, 0) << "Stream byte size is not a product of calculated frame byte size"; num_frames_in_stream_ = test_stream_.input_file.length() / input_buffer_size_; CHECK_GT(num_frames_in_stream_, 0UL); CHECK_LE(num_frames_in_stream_, kMaxFrameNum); // We may need to loop over the stream more than once if more frames than // provided is required for bitrate tests. if (force_bitrate_ && num_frames_in_stream_ < kMinFramesForBitrateTests) { DVLOG(1) << "Stream too short for bitrate test (" << num_frames_in_stream_ << " frames), will loop it to reach " << kMinFramesForBitrateTests << " frames"; num_frames_to_encode_ = kMinFramesForBitrateTests; } else { num_frames_to_encode_ = num_frames_in_stream_; } thread_checker_.DetachFromThread(); } VEAClient::~VEAClient() { CHECK(!has_encoder()); } void VEAClient::CreateEncoder() { DCHECK(thread_checker_.CalledOnValidThread()); CHECK(!has_encoder()); scoped_ptr device = V4L2Device::Create(V4L2Device::kEncoder); encoder_.reset(new V4L2VideoEncodeAccelerator(device.Pass())); SetState(CS_ENCODER_SET); DVLOG(1) << "Profile: " << test_stream_.requested_profile << ", initial bitrate: " << test_stream_.requested_bitrate; if (!encoder_->Initialize(kInputFormat, test_stream_.size, test_stream_.requested_profile, test_stream_.requested_bitrate, this)) { DLOG(ERROR) << "VideoEncodeAccelerator::Initialize() failed"; SetState(CS_ERROR); return; } SetStreamParameters(test_stream_.requested_bitrate, test_stream_.requested_framerate); SetState(CS_INITIALIZED); } void VEAClient::DestroyEncoder() { DCHECK(thread_checker_.CalledOnValidThread()); if (!has_encoder()) return; encoder_.reset(); } double VEAClient::frames_per_second() { base::TimeDelta duration = last_frame_ready_time_ - encode_start_time_; return num_encoded_frames_ / duration.InSecondsF(); } void VEAClient::RequireBitstreamBuffers(unsigned int input_count, const gfx::Size& input_coded_size, size_t output_size) { DCHECK(thread_checker_.CalledOnValidThread()); ASSERT_EQ(state_, CS_INITIALIZED); SetState(CS_ENCODING); // TODO(posciak): For now we only support input streams that meet encoder // size requirements exactly (i.e. coded size == visible size), so that we // can simply mmap the stream file and feed the encoder directly with chunks // of that, instead of memcpying from mmapped file into a separate set of // input buffers that would meet the coded size and alignment requirements. // If/when this is changed, the ARM-specific alignment check below should be // redone as well. input_coded_size_ = input_coded_size; ASSERT_EQ(input_coded_size_, test_stream_.size); #if defined(ARCH_CPU_ARMEL) // ARM performs CPU cache management with CPU cache line granularity. We thus // need to ensure our buffers are CPU cache line-aligned (64 byte-aligned). // Otherwise newer kernels will refuse to accept them, and on older kernels // we'll be treating ourselves to random corruption. // Since we are just mmapping and passing chunks of the input file, to ensure // alignment, if the starting virtual addresses of the frames in it were not // 64 byte-aligned, we'd have to use a separate set of input buffers and copy // the frames into them before sending to the encoder. It would have been an // overkill here though, because, for now at least, we only test resolutions // that result in proper alignment, and it would have also interfered with // performance testing. So just assert that the frame size is a multiple of // 64 bytes. This ensures all frames start at 64-byte boundary, because // MemoryMappedFile should be mmapp()ed at virtual page start as well. ASSERT_EQ(input_buffer_size_ & 63, 0u) << "Frame size has to be a multiple of 64 bytes"; ASSERT_EQ(reinterpret_cast(test_stream_.input_file.data()) & 63, 0) << "Mapped file should be mapped at a 64 byte boundary"; #endif num_required_input_buffers_ = input_count; ASSERT_GT(num_required_input_buffers_, 0UL); output_buffer_size_ = output_size; ASSERT_GT(output_buffer_size_, 0UL); for (unsigned int i = 0; i < kNumOutputBuffers; ++i) { base::SharedMemory* shm = new base::SharedMemory(); CHECK(shm->CreateAndMapAnonymous(output_buffer_size_)); output_shms_.push_back(shm); FeedEncoderWithOutput(shm); } encode_start_time_ = base::TimeTicks::Now(); FeedEncoderWithInputs(); } void VEAClient::BitstreamBufferReady(int32 bitstream_buffer_id, size_t payload_size, bool key_frame) { DCHECK(thread_checker_.CalledOnValidThread()); ASSERT_LE(payload_size, output_buffer_size_); IdToSHM::iterator it = output_buffers_at_client_.find(bitstream_buffer_id); ASSERT_NE(it, output_buffers_at_client_.end()); base::SharedMemory* shm = it->second; output_buffers_at_client_.erase(it); if (state_ == CS_FINISHED) return; encoded_stream_size_since_last_check_ += payload_size; const uint8* stream_ptr = static_cast(shm->memory()); if (payload_size > 0) validator_->ProcessStreamBuffer(stream_ptr, payload_size); EXPECT_EQ(key_frame, seen_keyframe_in_this_buffer_); seen_keyframe_in_this_buffer_ = false; if (save_to_file_) { int size = base::checked_cast(payload_size); EXPECT_EQ(base::AppendToFile( base::FilePath::FromUTF8Unsafe(test_stream_.out_filename), static_cast(shm->memory()), size), size); } FeedEncoderWithOutput(shm); } void VEAClient::NotifyError(VideoEncodeAccelerator::Error error) { DCHECK(thread_checker_.CalledOnValidThread()); SetState(CS_ERROR); } void VEAClient::SetState(ClientState new_state) { DVLOG(4) << "Changing state " << state_ << "->" << new_state; note_->Notify(new_state); state_ = new_state; } void VEAClient::SetStreamParameters(unsigned int bitrate, unsigned int framerate) { current_requested_bitrate_ = bitrate; current_framerate_ = framerate; CHECK_GT(current_requested_bitrate_, 0UL); CHECK_GT(current_framerate_, 0UL); encoder_->RequestEncodingParametersChange(current_requested_bitrate_, current_framerate_); DVLOG(1) << "Switched parameters to " << current_requested_bitrate_ << " bps @ " << current_framerate_ << " FPS"; } void VEAClient::InputNoLongerNeededCallback(int32 input_id) { std::set::iterator it = inputs_at_client_.find(input_id); ASSERT_NE(it, inputs_at_client_.end()); inputs_at_client_.erase(it); FeedEncoderWithInputs(); } scoped_refptr VEAClient::PrepareInputFrame(off_t position) { CHECK_LE(position + input_buffer_size_, test_stream_.input_file.length()); uint8* frame_data = const_cast(test_stream_.input_file.data() + position); CHECK_GT(current_framerate_, 0U); scoped_refptr frame = media::VideoFrame::WrapExternalYuvData( kInputFormat, input_coded_size_, gfx::Rect(test_stream_.size), test_stream_.size, input_coded_size_.width(), input_coded_size_.width() / 2, input_coded_size_.width() / 2, frame_data, frame_data + input_coded_size_.GetArea(), frame_data + (input_coded_size_.GetArea() * 5 / 4), base::TimeDelta().FromMilliseconds( next_input_id_ * base::Time::kMillisecondsPerSecond / current_framerate_), media::BindToCurrentLoop( base::Bind(&VEAClient::InputNoLongerNeededCallback, base::Unretained(this), next_input_id_))); CHECK(inputs_at_client_.insert(next_input_id_).second); ++next_input_id_; return frame; } void VEAClient::FeedEncoderWithInputs() { if (!has_encoder()) return; if (state_ != CS_ENCODING) return; while (inputs_at_client_.size() < num_required_input_buffers_ + kNumExtraInputFrames) { size_t bytes_left = test_stream_.input_file.length() - pos_in_input_stream_; if (bytes_left < input_buffer_size_) { DCHECK_EQ(bytes_left, 0UL); // Rewind if at the end of stream and we are still encoding. // This is to flush the encoder with additional frames from the beginning // of the stream, or if the stream is shorter that the number of frames // we require for bitrate tests. pos_in_input_stream_ = 0; continue; } bool force_keyframe = false; if (keyframe_period_ && next_input_id_ % keyframe_period_ == 0) { keyframe_requested_at_ = next_input_id_; force_keyframe = true; } scoped_refptr video_frame = PrepareInputFrame(pos_in_input_stream_); pos_in_input_stream_ += input_buffer_size_; encoder_->Encode(video_frame, force_keyframe); } } void VEAClient::FeedEncoderWithOutput(base::SharedMemory* shm) { if (!has_encoder()) return; if (state_ != CS_ENCODING) return; base::SharedMemoryHandle dup_handle; CHECK(shm->ShareToProcess(base::Process::Current().handle(), &dup_handle)); media::BitstreamBuffer bitstream_buffer( next_output_buffer_id_++, dup_handle, output_buffer_size_); CHECK(output_buffers_at_client_.insert(std::make_pair(bitstream_buffer.id(), shm)).second); encoder_->UseOutputBitstreamBuffer(bitstream_buffer); } bool VEAClient::HandleEncodedFrame(bool keyframe) { // This would be a bug in the test, which should not ignore false // return value from this method. CHECK_LE(num_encoded_frames_, num_frames_to_encode_); ++num_encoded_frames_; ++num_frames_since_last_check_; last_frame_ready_time_ = base::TimeTicks::Now(); if (keyframe) { // Got keyframe, reset keyframe detection regardless of whether we // got a frame in time or not. keyframe_requested_at_ = kMaxFrameNum; seen_keyframe_in_this_buffer_ = true; } // Because the keyframe behavior requirements are loose, we give // the encoder more freedom here. It could either deliver a keyframe // immediately after we requested it, which could be for a frame number // before the one we requested it for (if the keyframe request // is asynchronous, i.e. not bound to any concrete frame, and because // the pipeline can be deeper than one frame), at that frame, or after. // So the only constraints we put here is that we get a keyframe not // earlier than we requested one (in time), and not later than // kMaxKeyframeDelay frames after the frame, for which we requested // it, comes back encoded. EXPECT_LE(num_encoded_frames_, keyframe_requested_at_ + kMaxKeyframeDelay); if (num_encoded_frames_ == num_frames_to_encode_ / 2) { VerifyStreamProperties(); if (test_stream_.requested_subsequent_bitrate != current_requested_bitrate_ || test_stream_.requested_subsequent_framerate != current_framerate_) { SetStreamParameters(test_stream_.requested_subsequent_bitrate, test_stream_.requested_subsequent_framerate); } } else if (num_encoded_frames_ == num_frames_to_encode_) { VerifyPerf(); VerifyStreamProperties(); SetState(CS_FINISHED); return false; } return true; } void VEAClient::VerifyPerf() { double measured_fps = frames_per_second(); LOG(INFO) << "Measured encoder FPS: " << measured_fps; if (test_perf_) EXPECT_GE(measured_fps, kMinPerfFPS); } void VEAClient::VerifyStreamProperties() { CHECK_GT(num_frames_since_last_check_, 0UL); CHECK_GT(encoded_stream_size_since_last_check_, 0UL); unsigned int bitrate = encoded_stream_size_since_last_check_ * 8 * current_framerate_ / num_frames_since_last_check_; DVLOG(1) << "Current chunk's bitrate: " << bitrate << " (expected: " << current_requested_bitrate_ << " @ " << current_framerate_ << " FPS," << " num frames in chunk: " << num_frames_since_last_check_; num_frames_since_last_check_ = 0; encoded_stream_size_since_last_check_ = 0; if (force_bitrate_) { EXPECT_NEAR(bitrate, current_requested_bitrate_, kBitrateTolerance * current_requested_bitrate_); } } // Test parameters: // - Number of concurrent encoders. // - If true, save output to file (provided an output filename was supplied). // - Force a keyframe every n frames. // - Force bitrate; the actual required value is provided as a property // of the input stream, because it depends on stream type/resolution/etc. // - If true, measure performance. // - If true, switch bitrate mid-stream. // - If true, switch framerate mid-stream. class VideoEncodeAcceleratorTest : public ::testing::TestWithParam< Tuple7 > {}; TEST_P(VideoEncodeAcceleratorTest, TestSimpleEncode) { const int num_concurrent_encoders = GetParam().a; const bool save_to_file = GetParam().b; const unsigned int keyframe_period = GetParam().c; const bool force_bitrate = GetParam().d; const bool test_perf = GetParam().e; const bool mid_stream_bitrate_switch = GetParam().f; const bool mid_stream_framerate_switch = GetParam().g; // Initialize the test streams. ScopedVector test_streams; ParseAndReadTestStreamData(*g_test_stream_data, &test_streams); UpdateTestStreamData( mid_stream_bitrate_switch, mid_stream_framerate_switch, &test_streams); ScopedVector > notes; // The clients can only be deleted after the encoder threads are stopped. ScopedVector clients; ScopedVector encoder_threads; // Create all the encoders. for (int i = 0; i < num_concurrent_encoders; i++) { int test_stream_index = i % test_streams.size(); // Disregard save_to_file if we didn't get an output filename. bool encoder_save_to_file = (save_to_file && !test_streams[test_stream_index]->out_filename.empty()); notes.push_back(new ClientStateNotification()); clients.push_back(new VEAClient(*test_streams[test_stream_index], notes.back(), encoder_save_to_file, keyframe_period, force_bitrate, test_perf)); // Initialize the encoder thread. char thread_name[32]; sprintf(thread_name, "EncoderThread%d", i); base::Thread* encoder_thread = new base::Thread(thread_name); encoder_thread->Start(); encoder_thread->message_loop()->PostTask( FROM_HERE, base::Bind(&VEAClient::CreateEncoder, base::Unretained(clients.back()))); encoder_threads.push_back(encoder_thread); } // Wait all the encoders to finish. for (int i = 0; i < num_concurrent_encoders; i++) { ASSERT_EQ(notes[i]->Wait(), CS_ENCODER_SET); ASSERT_EQ(notes[i]->Wait(), CS_INITIALIZED); ASSERT_EQ(notes[i]->Wait(), CS_ENCODING); ASSERT_EQ(notes[i]->Wait(), CS_FINISHED); encoder_threads[i]->message_loop()->PostTask( FROM_HERE, base::Bind(&VEAClient::DestroyEncoder, base::Unretained(clients[i]))); encoder_threads[i]->Stop(); } } INSTANTIATE_TEST_CASE_P( SimpleEncode, VideoEncodeAcceleratorTest, ::testing::Values(MakeTuple(1, true, 0, false, false, false, false))); INSTANTIATE_TEST_CASE_P( EncoderPerf, VideoEncodeAcceleratorTest, ::testing::Values(MakeTuple(1, false, 0, false, true, false, false))); INSTANTIATE_TEST_CASE_P( ForceKeyframes, VideoEncodeAcceleratorTest, ::testing::Values(MakeTuple(1, false, 10, false, false, false, false))); INSTANTIATE_TEST_CASE_P( ForceBitrate, VideoEncodeAcceleratorTest, ::testing::Values(MakeTuple(1, false, 0, true, false, false, false))); INSTANTIATE_TEST_CASE_P( MidStreamParamSwitchBitrate, VideoEncodeAcceleratorTest, ::testing::Values(MakeTuple(1, false, 0, true, false, true, false))); INSTANTIATE_TEST_CASE_P( MidStreamParamSwitchFPS, VideoEncodeAcceleratorTest, ::testing::Values(MakeTuple(1, false, 0, true, false, false, true))); INSTANTIATE_TEST_CASE_P( MidStreamParamSwitchBitrateAndFPS, VideoEncodeAcceleratorTest, ::testing::Values(MakeTuple(1, false, 0, true, false, true, true))); INSTANTIATE_TEST_CASE_P( MultipleEncoders, VideoEncodeAcceleratorTest, ::testing::Values(MakeTuple(3, false, 0, false, false, false, false), MakeTuple(3, false, 0, true, false, true, true))); // TODO(posciak): more tests: // - async FeedEncoderWithOutput // - out-of-order return of outputs to encoder // - multiple encoders + decoders // - mid-stream encoder_->Destroy() } // namespace } // namespace content int main(int argc, char** argv) { testing::InitGoogleTest(&argc, argv); // Removes gtest-specific args. CommandLine::Init(argc, argv); base::ShadowingAtExitManager at_exit_manager; scoped_ptr test_stream_data( new base::FilePath::StringType( media::GetTestDataFilePath(content::g_default_in_filename).value() + content::g_default_in_parameters)); content::g_test_stream_data = test_stream_data.get(); // Needed to enable DVLOG through --vmodule. logging::LoggingSettings settings; settings.logging_dest = logging::LOG_TO_SYSTEM_DEBUG_LOG; CHECK(logging::InitLogging(settings)); CommandLine* cmd_line = CommandLine::ForCurrentProcess(); DCHECK(cmd_line); CommandLine::SwitchMap switches = cmd_line->GetSwitches(); for (CommandLine::SwitchMap::const_iterator it = switches.begin(); it != switches.end(); ++it) { if (it->first == "test_stream_data") { test_stream_data->assign(it->second.c_str()); continue; } if (it->first == "v" || it->first == "vmodule") continue; LOG(FATAL) << "Unexpected switch: " << it->first << ":" << it->second; } return RUN_ALL_TESTS(); }