// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "courgette/disassembler.h" #include <algorithm> #include <string> #include <vector> #include "base/basictypes.h" #include "base/logging.h" #include "courgette/assembly_program.h" #include "courgette/courgette.h" #include "courgette/encoded_program.h" #include "courgette/image_info.h" // COURGETTE_HISTOGRAM_TARGETS prints out a histogram of how frequently // different target addresses are referenced. Purely for debugging. #define COURGETTE_HISTOGRAM_TARGETS 0 namespace courgette { class DisassemblerWin32X86 : public Disassembler { public: explicit DisassemblerWin32X86(PEInfo* pe_info) : pe_info_(pe_info), incomplete_disassembly_(false) { } virtual bool Disassemble(AssemblyProgram* target); virtual void Destroy() { delete this; } protected: PEInfo& pe_info() { return *pe_info_; } CheckBool ParseFile(AssemblyProgram* target) WARN_UNUSED_RESULT; bool ParseAbs32Relocs(); void ParseRel32RelocsFromSections(); void ParseRel32RelocsFromSection(const Section* section); CheckBool ParseNonSectionFileRegion(uint32 start_file_offset, uint32 end_file_offset, AssemblyProgram* program) WARN_UNUSED_RESULT; CheckBool ParseFileRegion(const Section* section, uint32 start_file_offset, uint32 end_file_offset, AssemblyProgram* program) WARN_UNUSED_RESULT; #if COURGETTE_HISTOGRAM_TARGETS void HistogramTargets(const char* kind, const std::map<RVA, int>& map); #endif PEInfo* pe_info_; bool incomplete_disassembly_; // 'true' if can leave out 'uninteresting' bits std::vector<RVA> abs32_locations_; std::vector<RVA> rel32_locations_; #if COURGETTE_HISTOGRAM_TARGETS std::map<RVA, int> abs32_target_rvas_; std::map<RVA, int> rel32_target_rvas_; #endif }; bool DisassemblerWin32X86::Disassemble(AssemblyProgram* target) { if (!pe_info().ok()) return false; target->set_image_base(pe_info().image_base()); if (!ParseAbs32Relocs()) return false; ParseRel32RelocsFromSections(); if (!ParseFile(target)) return false; target->DefaultAssignIndexes(); return true; } static uint32 Read32LittleEndian(const void* address) { return *reinterpret_cast<const uint32*>(address); } bool DisassemblerWin32X86::ParseAbs32Relocs() { abs32_locations_.clear(); if (!pe_info().ParseRelocs(&abs32_locations_)) return false; std::sort(abs32_locations_.begin(), abs32_locations_.end()); #if COURGETTE_HISTOGRAM_TARGETS for (size_t i = 0; i < abs32_locations_.size(); ++i) { RVA rva = abs32_locations_[i]; // The 4 bytes at the relocation are a reference to some address. uint32 target_address = Read32LittleEndian(pe_info().RVAToPointer(rva)); ++abs32_target_rvas_[target_address - pe_info().image_base()]; } #endif return true; } void DisassemblerWin32X86::ParseRel32RelocsFromSections() { uint32 file_offset = 0; while (file_offset < pe_info().length()) { const Section* section = pe_info().FindNextSection(file_offset); if (section == NULL) break; if (file_offset < section->file_offset_of_raw_data) file_offset = section->file_offset_of_raw_data; ParseRel32RelocsFromSection(section); file_offset += section->size_of_raw_data; } std::sort(rel32_locations_.begin(), rel32_locations_.end()); #if COURGETTE_HISTOGRAM_TARGETS VLOG(1) << "abs32_locations_ " << abs32_locations_.size() << "\nrel32_locations_ " << rel32_locations_.size() << "\nabs32_target_rvas_ " << abs32_target_rvas_.size() << "\nrel32_target_rvas_ " << rel32_target_rvas_.size(); int common = 0; std::map<RVA, int>::iterator abs32_iter = abs32_target_rvas_.begin(); std::map<RVA, int>::iterator rel32_iter = rel32_target_rvas_.begin(); while (abs32_iter != abs32_target_rvas_.end() && rel32_iter != rel32_target_rvas_.end()) { if (abs32_iter->first < rel32_iter->first) ++abs32_iter; else if (rel32_iter->first < abs32_iter->first) ++rel32_iter; else { ++common; ++abs32_iter; ++rel32_iter; } } VLOG(1) << "common " << common; #endif } void DisassemblerWin32X86::ParseRel32RelocsFromSection(const Section* section) { // TODO(sra): use characteristic. bool isCode = strcmp(section->name, ".text") == 0; if (!isCode) return; uint32 start_file_offset = section->file_offset_of_raw_data; uint32 end_file_offset = start_file_offset + section->size_of_raw_data; RVA relocs_start_rva = pe_info().base_relocation_table().address_; const uint8* start_pointer = pe_info().FileOffsetToPointer(start_file_offset); const uint8* end_pointer = pe_info().FileOffsetToPointer(end_file_offset); RVA start_rva = pe_info().FileOffsetToRVA(start_file_offset); RVA end_rva = start_rva + section->virtual_size; // Quick way to convert from Pointer to RVA within a single Section is to // subtract 'pointer_to_rva'. const uint8* const adjust_pointer_to_rva = start_pointer - start_rva; std::vector<RVA>::iterator abs32_pos = abs32_locations_.begin(); // Find the rel32 relocations. const uint8* p = start_pointer; while (p < end_pointer) { RVA current_rva = static_cast<RVA>(p - adjust_pointer_to_rva); if (current_rva == relocs_start_rva) { uint32 relocs_size = pe_info().base_relocation_table().size_; if (relocs_size) { p += relocs_size; continue; } } //while (abs32_pos != abs32_locations_.end() && *abs32_pos < current_rva) // ++abs32_pos; // Heuristic discovery of rel32 locations in instruction stream: are the // next few bytes the start of an instruction containing a rel32 // addressing mode? const uint8* rel32 = NULL; if (p + 5 < end_pointer) { if (*p == 0xE8 || *p == 0xE9) { // jmp rel32 and call rel32 rel32 = p + 1; } } if (p + 6 < end_pointer) { if (*p == 0x0F && (*(p+1) & 0xF0) == 0x80) { // Jcc long form if (p[1] != 0x8A && p[1] != 0x8B) // JPE/JPO unlikely rel32 = p + 2; } } if (rel32) { RVA rel32_rva = static_cast<RVA>(rel32 - adjust_pointer_to_rva); // Is there an abs32 reloc overlapping the candidate? while (abs32_pos != abs32_locations_.end() && *abs32_pos < rel32_rva - 3) ++abs32_pos; // Now: (*abs32_pos > rel32_rva - 4) i.e. the lowest addressed 4-byte // region that could overlap rel32_rva. if (abs32_pos != abs32_locations_.end()) { if (*abs32_pos < rel32_rva + 4) { // Beginning of abs32 reloc is before end of rel32 reloc so they // overlap. Skip four bytes past the abs32 reloc. p += (*abs32_pos + 4) - current_rva; continue; } } RVA target_rva = rel32_rva + 4 + Read32LittleEndian(rel32); // To be valid, rel32 target must be within image, and within this // section. if (pe_info().IsValidRVA(target_rva) && start_rva <= target_rva && target_rva < end_rva) { rel32_locations_.push_back(rel32_rva); #if COURGETTE_HISTOGRAM_TARGETS ++rel32_target_rvas_[target_rva]; #endif p += 4; continue; } } p += 1; } } CheckBool DisassemblerWin32X86::ParseFile(AssemblyProgram* program) { bool ok = true; // Walk all the bytes in the file, whether or not in a section. uint32 file_offset = 0; while (ok && file_offset < pe_info().length()) { const Section* section = pe_info().FindNextSection(file_offset); if (section == NULL) { // No more sections. There should not be extra stuff following last // section. // ParseNonSectionFileRegion(file_offset, pe_info().length(), program); break; } if (file_offset < section->file_offset_of_raw_data) { uint32 section_start_offset = section->file_offset_of_raw_data; ok = ParseNonSectionFileRegion(file_offset, section_start_offset, program); file_offset = section_start_offset; } if (ok) { uint32 end = file_offset + section->size_of_raw_data; ok = ParseFileRegion(section, file_offset, end, program); file_offset = end; } } #if COURGETTE_HISTOGRAM_TARGETS HistogramTargets("abs32 relocs", abs32_target_rvas_); HistogramTargets("rel32 relocs", rel32_target_rvas_); #endif return ok; } CheckBool DisassemblerWin32X86::ParseNonSectionFileRegion( uint32 start_file_offset, uint32 end_file_offset, AssemblyProgram* program) { if (incomplete_disassembly_) return true; const uint8* start = pe_info().FileOffsetToPointer(start_file_offset); const uint8* end = pe_info().FileOffsetToPointer(end_file_offset); const uint8* p = start; bool ok = true; while (p < end && ok) { ok = program->EmitByteInstruction(*p); ++p; } return ok; } CheckBool DisassemblerWin32X86::ParseFileRegion( const Section* section, uint32 start_file_offset, uint32 end_file_offset, AssemblyProgram* program) { RVA relocs_start_rva = pe_info().base_relocation_table().address_; const uint8* start_pointer = pe_info().FileOffsetToPointer(start_file_offset); const uint8* end_pointer = pe_info().FileOffsetToPointer(end_file_offset); RVA start_rva = pe_info().FileOffsetToRVA(start_file_offset); RVA end_rva = start_rva + section->virtual_size; // Quick way to convert from Pointer to RVA within a single Section is to // subtract 'pointer_to_rva'. const uint8* const adjust_pointer_to_rva = start_pointer - start_rva; std::vector<RVA>::iterator rel32_pos = rel32_locations_.begin(); std::vector<RVA>::iterator abs32_pos = abs32_locations_.begin(); bool ok = program->EmitOriginInstruction(start_rva); const uint8* p = start_pointer; while (ok && p < end_pointer) { RVA current_rva = static_cast<RVA>(p - adjust_pointer_to_rva); // The base relocation table is usually in the .relocs section, but it could // actually be anywhere. Make sure we skip it because we will regenerate it // during assembly. if (current_rva == relocs_start_rva) { ok = program->EmitMakeRelocsInstruction(); if (!ok) break; uint32 relocs_size = pe_info().base_relocation_table().size_; if (relocs_size) { p += relocs_size; continue; } } while (abs32_pos != abs32_locations_.end() && *abs32_pos < current_rva) ++abs32_pos; if (abs32_pos != abs32_locations_.end() && *abs32_pos == current_rva) { uint32 target_address = Read32LittleEndian(p); RVA target_rva = target_address - pe_info().image_base(); // TODO(sra): target could be Label+offset. It is not clear how to guess // which it might be. We assume offset==0. ok = program->EmitAbs32(program->FindOrMakeAbs32Label(target_rva)); if (!ok) break; p += 4; continue; } while (rel32_pos != rel32_locations_.end() && *rel32_pos < current_rva) ++rel32_pos; if (rel32_pos != rel32_locations_.end() && *rel32_pos == current_rva) { RVA target_rva = current_rva + 4 + Read32LittleEndian(p); ok = program->EmitRel32(program->FindOrMakeRel32Label(target_rva)); p += 4; continue; } if (incomplete_disassembly_) { if ((abs32_pos == abs32_locations_.end() || end_rva <= *abs32_pos) && (rel32_pos == rel32_locations_.end() || end_rva <= *rel32_pos) && (end_rva <= relocs_start_rva || current_rva >= relocs_start_rva)) { // No more relocs in this section, don't bother encoding bytes. break; } } ok = program->EmitByteInstruction(*p); p += 1; } return ok; } #if COURGETTE_HISTOGRAM_TARGETS // Histogram is printed to std::cout. It is purely for debugging the algorithm // and is only enabled manually in 'exploration' builds. I don't want to add // command-line configuration for this feature because this code has to be // small, which means compiled-out. void DisassemblerWin32X86::HistogramTargets(const char* kind, const std::map<RVA, int>& map) { int total = 0; std::map<int, std::vector<RVA> > h; for (std::map<RVA, int>::const_iterator p = map.begin(); p != map.end(); ++p) { h[p->second].push_back(p->first); total += p->second; } std::cout << total << " " << kind << " to " << map.size() << " unique targets" << std::endl; std::cout << "indegree: #targets-with-indegree (example)" << std::endl; const int kFirstN = 15; bool someSkipped = false; int index = 0; for (std::map<int, std::vector<RVA> >::reverse_iterator p = h.rbegin(); p != h.rend(); ++p) { ++index; if (index <= kFirstN || p->first <= 3) { if (someSkipped) { std::cout << "..." << std::endl; } size_t count = p->second.size(); std::cout << std::dec << p->first << ": " << count; if (count <= 2) { for (size_t i = 0; i < count; ++i) std::cout << " " << pe_info().DescribeRVA(p->second[i]); } std::cout << std::endl; someSkipped = false; } else { someSkipped = true; } } } #endif // COURGETTE_HISTOGRAM_TARGETS Disassembler* Disassembler::MakeDisassemberWin32X86(PEInfo* pe_info) { return new DisassemblerWin32X86(pe_info); } //////////////////////////////////////////////////////////////////////////////// Status ParseWin32X86PE(const void* buffer, size_t length, AssemblyProgram** output) { *output = NULL; PEInfo* pe_info = new PEInfo(); pe_info->Init(buffer, length); if (!pe_info->ParseHeader()) { delete pe_info; return C_INPUT_NOT_RECOGNIZED; } Disassembler* disassembler = Disassembler::MakeDisassemberWin32X86(pe_info); AssemblyProgram* program = new AssemblyProgram(); if (!disassembler->Disassemble(program)) { delete program; disassembler->Destroy(); delete pe_info; return C_DISASSEMBLY_FAILED; } disassembler->Destroy(); delete pe_info; *output = program; return C_OK; } void DeleteAssemblyProgram(AssemblyProgram* program) { delete program; } } // namespace courgette