// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "courgette/disassembler_elf_32_arm.h" #include #include "base/logging.h" #include "base/memory/scoped_ptr.h" #include "courgette/assembly_program.h" #include "courgette/courgette.h" namespace courgette { CheckBool DisassemblerElf32ARM::Compress(ARM_RVA type, uint32_t arm_op, RVA rva, uint16_t* c_op, uint32_t* addr) { // Notation for bit ranges in comments: // - Listing bits from highest to lowest. // - A-Z or (j1), (j2), etc.: single bit in source. // - a-z: multiple, consecutive bits in source. switch (type) { case ARM_OFF8: { // Encoding T1. // The offset is given by lower 8 bits of the op. It is a 9-bit offset, // shifted right 1 bit, and signed extended. // arm_op = aaaaaaaa Snnnnnnn // *addr := SSSSSSSS SSSSSSSS SSSSSSSS nnnnnnn0 + 100 // *c_op := 00010000 aaaaaaaa uint32_t temp = (arm_op & 0x00FF) << 1; if (temp & 0x0100) temp |= 0xFFFFFE00; temp += 4; // Offset from _next_ PC. (*addr) = temp; (*c_op) = static_cast(arm_op >> 8) | 0x1000; break; } case ARM_OFF11: { // Encoding T2. // The offset is given by lower 11 bits of the op, and is a 12-bit offset, // shifted right 1 bit, and sign extended. // arm_op = aaaaaSnn nnnnnnnn // *addr := SSSSSSSS SSSSSSSS SSSSSnnn nnnnnnn0 + 100 // *c_op := 00100000 000aaaaa uint32_t temp = (arm_op & 0x07FF) << 1; if (temp & 0x00000800) temp |= 0xFFFFF000; temp += 4; // Offset from _next_ PC. (*addr) = temp; (*c_op) = static_cast(arm_op >> 11) | 0x2000; break; } case ARM_OFF24: { // The offset is given by the lower 24-bits of the op, shifted // left 2 bits, and sign extended. // arm_op = aaaaaaaa Snnnnnnn nnnnnnnn nnnnnnnn // *addr := SSSSSSSn nnnnnnnn nnnnnnnn nnnnnn00 + 1000 // *c_op := 00110000 aaaaaaaa uint32_t temp = (arm_op & 0x00FFFFFF) << 2; if (temp & 0x02000000) temp |= 0xFC000000; temp += 8; (*addr) = temp; (*c_op) = (arm_op >> 24) | 0x3000; break; } case ARM_OFF25: { // Encoding T4. // arm_op = aaaaaSmm mmmmmmmm BC(j1)D(j2)nnn nnnnnnnn // where CD is in {01, 10, 11} // i1 := ~(j1 ^ S) // i2 := ~(j2 ^ S) // If CD == 10: // pppp := (rva % 4 == 0) ? 0100 : 0010 // Else: // pppp := 0100 // *addr := SSSSSSSS (i1)(i2)mmmmmm mmmmnnnn nnnnnnn0 + pppp // *c_op := 0100pppp aaaaaBCD // TODO(huangs): aaaaa = 11110 and B = 1 always? Investigate and fix. uint32_t temp = 0; temp |= (arm_op & 0x000007FF) << 1; // imm11 temp |= (arm_op & 0x03FF0000) >> 4; // imm10 uint32_t S = (arm_op & (1 << 26)) >> 26; uint32_t j2 = (arm_op & (1 << 11)) >> 11; uint32_t j1 = (arm_op & (1 << 13)) >> 13; bool bit12 = ((arm_op & (1 << 12)) >> 12) != 0; // D bool bit14 = ((arm_op & (1 << 14)) >> 14) != 0; // C uint32_t i2 = ~(j2 ^ S) & 1; uint32_t i1 = ~(j1 ^ S) & 1; bool toARM = bit14 && !bit12; temp |= (S << 24) | (i1 << 23) | (i2 << 22); if (temp & 0x01000000) // sign extension temp |= 0xFE000000; uint32_t prefetch; if (toARM) { // Align PC on 4-byte boundary. uint32_t align4byte = (rva % 4) ? 2 : 4; prefetch = align4byte; } else { prefetch = 4; } temp += prefetch; (*addr) = temp; uint32_t temp2 = 0x4000; temp2 |= (arm_op & (1 << 12)) >> 12; // .......D temp2 |= (arm_op & (1 << 14)) >> 13; // ......C. temp2 |= (arm_op & (1 << 15)) >> 13; // .....B.. temp2 |= (arm_op & 0xF8000000) >> 24; // aaaaa... temp2 |= (prefetch & 0x0000000F) << 8; (*c_op) = static_cast(temp2); break; } case ARM_OFF21: { // Encoding T3. // arm_op = 11110Scc ccmmmmmm 10(j1)0(j2)nnn nnnnnnnn // *addr := SSSSSSSS SSSS(j1)(j2)mm mmmmnnnn nnnnnnn0 + 100 // *c_op := 01010000 0000cccc uint32_t temp = 0; temp |= (arm_op & 0x000007FF) << 1; // imm11 temp |= (arm_op & 0x003F0000) >> 4; // imm6 uint32_t S = (arm_op & (1 << 26)) >> 26; // TODO(huangs): Check with docs: Perhaps j1, j2 should swap? uint32_t j2 = (arm_op & (1 << 11)) >> 11; uint32_t j1 = (arm_op & (1 << 13)) >> 13; temp |= (S << 20) | (j1 << 19) | (j2 << 18); if (temp & 0x00100000) // sign extension temp |= 0xFFE00000; temp += 4; (*addr) = temp; uint32_t temp2 = 0x5000; temp2 |= (arm_op & 0x03C00000) >> 22; // just save the cond (*c_op) = static_cast(temp2); break; } default: return false; } return true; } CheckBool DisassemblerElf32ARM::Decompress(ARM_RVA type, uint16_t c_op, uint32_t addr, uint32_t* arm_op) { switch (type) { case ARM_OFF8: // addr = SSSSSSSS SSSSSSSS SSSSSSSS nnnnnnn0 + 100 // c_op = 00010000 aaaaaaaa // *arm_op := aaaaaaaa Snnnnnnn (*arm_op) = ((c_op & 0x0FFF) << 8) | (((addr - 4) >> 1) & 0x000000FF); break; case ARM_OFF11: // addr = SSSSSSSS SSSSSSSS SSSSSnnn nnnnnnn0 + 100 // c_op = 00100000 000aaaaa // *arm_op := aaaaaSnn nnnnnnnn (*arm_op) = ((c_op & 0x0FFF) << 11) | (((addr - 4) >> 1) & 0x000007FF); break; case ARM_OFF24: // addr = SSSSSSSn nnnnnnnn nnnnnnnn nnnnnn00 + 1000 // c_op = 00110000 aaaaaaaa // *arm_op := aaaaaaaa Snnnnnnn nnnnnnnn nnnnnnnn (*arm_op) = ((c_op & 0x0FFF) << 24) | (((addr - 8) >> 2) & 0x00FFFFFF); break; case ARM_OFF25: { // addr = SSSSSSSS (i1)(i2)mmmmmm mmmmnnnn nnnnnnn0 + pppp // c_op = 0100pppp aaaaaBCD // j1 := ~i1 ^ S // j2 := ~i2 ^ S // *arm_op := aaaaaSmm mmmmmmmm BC(j1)D(j2)nnn nnnnnnnn uint32_t temp = 0; temp |= (c_op & (1 << 0)) << 12; temp |= (c_op & (1 << 1)) << 13; temp |= (c_op & (1 << 2)) << 13; temp |= (c_op & (0xF8000000 >> 24)) << 24; uint32_t prefetch = (c_op & 0x0F00) >> 8; addr -= prefetch; addr &= 0x01FFFFFF; uint32_t S = (addr & (1 << 24)) >> 24; uint32_t i1 = (addr & (1 << 23)) >> 23; uint32_t i2 = (addr & (1 << 22)) >> 22; uint32_t j1 = ((~i1) ^ S) & 1; uint32_t j2 = ((~i2) ^ S) & 1; temp |= S << 26; temp |= j2 << 11; temp |= j1 << 13; temp |= (addr & (0x000007FF << 1)) >> 1; temp |= (addr & (0x03FF0000 >> 4)) << 4; (*arm_op) = temp; break; } case ARM_OFF21: { // addr = SSSSSSSS SSSS(j1)(j2)mm mmmmnnnn nnnnnnn0 + 100 // c_op = 01010000 0000cccc // *arm_op := 11110Scc ccmmmmmm 10(j1)0(j2)nnn nnnnnnnn uint32_t temp = 0xF0008000; temp |= (c_op & (0x03C00000 >> 22)) << 22; addr -= 4; addr &= 0x001FFFFF; uint32_t S = (addr & (1 << 20)) >> 20; uint32_t j1 = (addr & (1 << 19)) >> 19; uint32_t j2 = (addr & (1 << 18)) >> 18; temp |= S << 26; temp |= j2 << 11; temp |= j1 << 13; temp |= (addr & (0x000007FF << 1)) >> 1; temp |= (addr & (0x003F0000 >> 4)) << 4; (*arm_op) = temp; break; } default: return false; } return true; } uint16_t DisassemblerElf32ARM::TypedRVAARM::op_size() const { switch (type_) { case ARM_OFF8: return 2; case ARM_OFF11: return 2; case ARM_OFF24: return 4; case ARM_OFF25: return 4; case ARM_OFF21: return 4; default: return 0xFFFF; } } CheckBool DisassemblerElf32ARM::TypedRVAARM::ComputeRelativeTarget( const uint8_t* op_pointer) { arm_op_ = op_pointer; switch (type_) { case ARM_OFF8: // Falls through. case ARM_OFF11: { RVA relative_target; CheckBool ret = Compress(type_, Read16LittleEndian(op_pointer), rva(), &c_op_, &relative_target); set_relative_target(relative_target); return ret; } case ARM_OFF24: { RVA relative_target; CheckBool ret = Compress(type_, Read32LittleEndian(op_pointer), rva(), &c_op_, &relative_target); set_relative_target(relative_target); return ret; } case ARM_OFF25: // Falls through. case ARM_OFF21: { // A thumb-2 op is 32 bits stored as two 16-bit words uint32_t pval = (Read16LittleEndian(op_pointer) << 16) | Read16LittleEndian(op_pointer + 2); RVA relative_target; CheckBool ret = Compress(type_, pval, rva(), &c_op_, &relative_target); set_relative_target(relative_target); return ret; } default: return false; } } CheckBool DisassemblerElf32ARM::TypedRVAARM::EmitInstruction( AssemblyProgram* program, RVA target_rva) { return program->EmitRel32ARM(c_op(), program->FindOrMakeRel32Label(target_rva), arm_op_, op_size()); } DisassemblerElf32ARM::DisassemblerElf32ARM(const void* start, size_t length) : DisassemblerElf32(start, length) { } // Convert an ELF relocation struction into an RVA. CheckBool DisassemblerElf32ARM::RelToRVA(Elf32_Rel rel, RVA* result) const { // The rightmost byte of r_info is the type. elf32_rel_arm_type_values type = static_cast(rel.r_info & 0xFF); // The other 3 bytes of r_info are the symbol. uint32_t symbol = rel.r_info >> 8; switch (type) { case R_ARM_RELATIVE: if (symbol != 0) return false; // This is a basic ABS32 relocation address. *result = rel.r_offset; return true; default: return false; } } CheckBool DisassemblerElf32ARM::ParseRelocationSection( const Elf32_Shdr* section_header, AssemblyProgram* program) { // This method compresses a contiguous stretch of R_ARM_RELATIVE entries in // the relocation table with a Courgette relocation table instruction. // It skips any entries at the beginning that appear in a section that // Courgette doesn't support, e.g. INIT. // // Specifically, the entries should be // (1) In the same relocation table // (2) Are consecutive // (3) Are sorted in memory address order // // Happily, this is normally the case, but it's not required by spec so we // check, and just don't do it if we don't match up. // // The expectation is that one relocation section will contain all of our // R_ARM_RELATIVE entries in the expected order followed by assorted other // entries we can't use special handling for. bool match = true; // Walk all the bytes in the section, matching relocation table or not. FileOffset file_offset = section_header->sh_offset; FileOffset section_end = section_header->sh_offset + section_header->sh_size; const Elf32_Rel* section_relocs_iter = reinterpret_cast( FileOffsetToPointer(section_header->sh_offset)); uint32_t section_relocs_count = section_header->sh_size / section_header->sh_entsize; if (abs32_locations_.size() > section_relocs_count) match = false; if (!abs32_locations_.empty()) { std::vector::iterator reloc_iter = abs32_locations_.begin(); for (uint32_t i = 0; i < section_relocs_count; ++i) { if (section_relocs_iter->r_offset == *reloc_iter) break; if (!ParseSimpleRegion(file_offset, file_offset + sizeof(Elf32_Rel), program)) { return false; } file_offset += sizeof(Elf32_Rel); ++section_relocs_iter; } while (match && (reloc_iter != abs32_locations_.end())) { if (section_relocs_iter->r_info != R_ARM_RELATIVE || section_relocs_iter->r_offset != *reloc_iter) { match = false; } ++section_relocs_iter; ++reloc_iter; file_offset += sizeof(Elf32_Rel); } if (match) { // Skip over relocation tables if (!program->EmitElfARMRelocationInstruction()) return false; } } return ParseSimpleRegion(file_offset, section_end, program); } // TODO(huangs): Detect and avoid overlap with abs32 addresses. CheckBool DisassemblerElf32ARM::ParseRel32RelocsFromSection( const Elf32_Shdr* section_header) { FileOffset start_file_offset = section_header->sh_offset; FileOffset end_file_offset = start_file_offset + section_header->sh_size; const uint8_t* start_pointer = FileOffsetToPointer(start_file_offset); const uint8_t* end_pointer = FileOffsetToPointer(end_file_offset); // Quick way to convert from Pointer to RVA within a single Section is to // subtract |pointer_to_rva|. const uint8_t* const adjust_pointer_to_rva = start_pointer - section_header->sh_addr; // Find the rel32 relocations. const uint8_t* p = start_pointer; bool on_32bit = 1; // 32-bit ARM ops appear on 32-bit boundaries, so track it while (p < end_pointer) { // Heuristic discovery of rel32 locations in instruction stream: are the // next few bytes the start of an instruction containing a rel32 // addressing mode? scoped_ptr rel32_rva; RVA target_rva = 0; bool found = false; // 16-bit thumb ops if (!found && p + 3 <= end_pointer) { uint16_t pval = Read16LittleEndian(p); if ((pval & 0xF000) == 0xD000) { RVA rva = static_cast(p - adjust_pointer_to_rva); rel32_rva.reset(new TypedRVAARM(ARM_OFF8, rva)); if (!rel32_rva->ComputeRelativeTarget(p)) return false; target_rva = rel32_rva->rva() + rel32_rva->relative_target(); found = true; } else if ((pval & 0xF800) == 0xE000) { RVA rva = static_cast(p - adjust_pointer_to_rva); rel32_rva.reset(new TypedRVAARM(ARM_OFF11, rva)); if (!rel32_rva->ComputeRelativeTarget(p)) return false; target_rva = rel32_rva->rva() + rel32_rva->relative_target(); found = true; } } // thumb-2 ops comprised of two 16-bit words. if (!found && p + 5 <= end_pointer) { // This is really two 16-bit words, not one 32-bit word. uint32_t pval = (Read16LittleEndian(p) << 16) | Read16LittleEndian(p + 2); if ((pval & 0xF8008000) == 0xF0008000) { // Covers thumb-2's 32-bit conditional/unconditional branches if ((pval & (1 << 14)) || (pval & (1 << 12))) { // A branch, with link, or with link and exchange. RVA rva = static_cast(p - adjust_pointer_to_rva); rel32_rva.reset(new TypedRVAARM(ARM_OFF25, rva)); if (!rel32_rva->ComputeRelativeTarget(p)) return false; target_rva = rel32_rva->rva() + rel32_rva->relative_target(); found = true; } else { // TODO(paulgazz) make sure cond is not 111 // A conditional branch instruction RVA rva = static_cast(p - adjust_pointer_to_rva); rel32_rva.reset(new TypedRVAARM(ARM_OFF21, rva)); if (!rel32_rva->ComputeRelativeTarget(p)) return false; target_rva = rel32_rva->rva() + rel32_rva->relative_target(); found = true; } } } // 32-bit ARM ops. if (!found && on_32bit && (p + 5) <= end_pointer) { uint32_t pval = Read32LittleEndian(p); if ((pval & 0x0E000000) == 0x0A000000) { // Covers both 0x0A 0x0B ARM relative branches RVA rva = static_cast(p - adjust_pointer_to_rva); rel32_rva.reset(new TypedRVAARM(ARM_OFF24, rva)); if (!rel32_rva->ComputeRelativeTarget(p)) return false; target_rva = rel32_rva->rva() + rel32_rva->relative_target(); found = true; } } if (found && IsValidTargetRVA(target_rva)) { uint16_t op_size = rel32_rva->op_size(); rel32_locations_.push_back(rel32_rva.release()); #if COURGETTE_HISTOGRAM_TARGETS ++rel32_target_rvas_[target_rva]; #endif p += op_size; // A tricky way to update the on_32bit flag. Here is the truth table: // on_32bit | on_32bit size is 4 // ---------+--------------------- // 1 | 0 0 // 0 | 0 1 // 0 | 1 0 // 1 | 1 1 on_32bit = (~(on_32bit ^ (op_size == 4))) != 0; } else { // Move 2 bytes at a time, but track 32-bit boundaries p += 2; on_32bit = ((on_32bit + 1) % 2) != 0; } } return true; } } // namespace courgette