// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "courgette/disassembler_win32_x64.h" #include #include #include #include "base/basictypes.h" #include "base/logging.h" #include "base/numerics/safe_conversions.h" #include "courgette/assembly_program.h" #include "courgette/courgette.h" #include "courgette/encoded_program.h" namespace courgette { DisassemblerWin32X64::DisassemblerWin32X64(const void* start, size_t length) : Disassembler(start, length), incomplete_disassembly_(false), is_PE32_plus_(false), optional_header_(NULL), size_of_optional_header_(0), offset_of_data_directories_(0), machine_type_(0), number_of_sections_(0), sections_(NULL), has_text_section_(false), size_of_code_(0), size_of_initialized_data_(0), size_of_uninitialized_data_(0), base_of_code_(0), base_of_data_(0), image_base_(0), size_of_image_(0), number_of_data_directories_(0) { } // ParseHeader attempts to match up the buffer with the Windows data // structures that exist within a Windows 'Portable Executable' format file. // Returns 'true' if the buffer matches, and 'false' if the data looks // suspicious. Rather than try to 'map' the buffer to the numerous windows // structures, we extract the information we need into the courgette::PEInfo // structure. // bool DisassemblerWin32X64::ParseHeader() { if (length() < kOffsetOfFileAddressOfNewExeHeader + 4 /*size*/) return Bad("Too small"); // Have 'MZ' magic for a DOS header? if (start()[0] != 'M' || start()[1] != 'Z') return Bad("Not MZ"); // offset from DOS header to PE header is stored in DOS header. uint32 offset = ReadU32(start(), kOffsetOfFileAddressOfNewExeHeader); if (offset >= length()) return Bad("Bad offset to PE header"); const uint8* const pe_header = OffsetToPointer(offset); const size_t kMinPEHeaderSize = 4 /*signature*/ + kSizeOfCoffHeader; if (pe_header <= start() || pe_header >= end() - kMinPEHeaderSize) return Bad("Bad offset to PE header"); if (offset % 8 != 0) return Bad("Misaligned PE header"); // The 'PE' header is an IMAGE_NT_HEADERS structure as defined in WINNT.H. // See http://msdn.microsoft.com/en-us/library/ms680336(VS.85).aspx // // The first field of the IMAGE_NT_HEADERS is the signature. if (!(pe_header[0] == 'P' && pe_header[1] == 'E' && pe_header[2] == 0 && pe_header[3] == 0)) return Bad("no PE signature"); // The second field of the IMAGE_NT_HEADERS is the COFF header. // The COFF header is also called an IMAGE_FILE_HEADER // http://msdn.microsoft.com/en-us/library/ms680313(VS.85).aspx const uint8* const coff_header = pe_header + 4; machine_type_ = ReadU16(coff_header, 0); number_of_sections_ = ReadU16(coff_header, 2); size_of_optional_header_ = ReadU16(coff_header, 16); // The rest of the IMAGE_NT_HEADERS is the IMAGE_OPTIONAL_HEADER(32|64) const uint8* const optional_header = coff_header + kSizeOfCoffHeader; optional_header_ = optional_header; if (optional_header + size_of_optional_header_ >= end()) return Bad("optional header past end of file"); // Check we can read the magic. if (size_of_optional_header_ < 2) return Bad("optional header no magic"); uint16 magic = ReadU16(optional_header, 0); if (magic == kImageNtOptionalHdr32Magic) { is_PE32_plus_ = false; offset_of_data_directories_ = kOffsetOfDataDirectoryFromImageOptionalHeader32; } else if (magic == kImageNtOptionalHdr64Magic) { is_PE32_plus_ = true; offset_of_data_directories_ = kOffsetOfDataDirectoryFromImageOptionalHeader64; } else { return Bad("unrecognized magic"); } // Check that we can read the rest of the the fixed fields. Data directories // directly follow the fixed fields of the IMAGE_OPTIONAL_HEADER. if (size_of_optional_header_ < offset_of_data_directories_) return Bad("optional header too short"); // The optional header is either an IMAGE_OPTIONAL_HEADER32 or // IMAGE_OPTIONAL_HEADER64 // http://msdn.microsoft.com/en-us/library/ms680339(VS.85).aspx // // Copy the fields we care about. size_of_code_ = ReadU32(optional_header, 4); size_of_initialized_data_ = ReadU32(optional_header, 8); size_of_uninitialized_data_ = ReadU32(optional_header, 12); base_of_code_ = ReadU32(optional_header, 20); if (is_PE32_plus_) { base_of_data_ = 0; image_base_ = ReadU64(optional_header, 24); } else { base_of_data_ = ReadU32(optional_header, 24); image_base_ = ReadU32(optional_header, 28); } size_of_image_ = ReadU32(optional_header, 56); number_of_data_directories_ = ReadU32(optional_header, (is_PE32_plus_ ? 108 : 92)); if (size_of_code_ >= length() || size_of_initialized_data_ >= length() || size_of_code_ + size_of_initialized_data_ >= length()) { // This validation fires on some perfectly fine executables. // return Bad("code or initialized data too big"); } // TODO(sra): we can probably get rid of most of the data directories. bool b = true; // 'b &= ...' could be short circuit 'b = b && ...' but it is not necessary // for correctness and it compiles smaller this way. b &= ReadDataDirectory(0, &export_table_); b &= ReadDataDirectory(1, &import_table_); b &= ReadDataDirectory(2, &resource_table_); b &= ReadDataDirectory(3, &exception_table_); b &= ReadDataDirectory(5, &base_relocation_table_); b &= ReadDataDirectory(11, &bound_import_table_); b &= ReadDataDirectory(12, &import_address_table_); b &= ReadDataDirectory(13, &delay_import_descriptor_); b &= ReadDataDirectory(14, &clr_runtime_header_); if (!b) { return Bad("malformed data directory"); } // Sections follow the optional header. sections_ = reinterpret_cast(optional_header + size_of_optional_header_); size_t detected_length = 0; for (int i = 0; i < number_of_sections_; ++i) { const Section* section = §ions_[i]; // TODO(sra): consider using the 'characteristics' field of the section // header to see if the section contains instructions. if (memcmp(section->name, ".text", 6) == 0) has_text_section_ = true; uint32 section_end = section->file_offset_of_raw_data + section->size_of_raw_data; if (section_end > detected_length) detected_length = section_end; } // Pretend our in-memory copy is only as long as our detected length. ReduceLength(detected_length); if (is_32bit()) { return Bad("32 bit executables are not supported by this disassembler"); } if (!has_text_section()) { return Bad("Resource-only executables are not yet supported"); } return Good(); } bool DisassemblerWin32X64::Disassemble(AssemblyProgram* target) { if (!ok()) return false; target->set_image_base(image_base()); if (!ParseAbs32Relocs()) return false; ParseRel32RelocsFromSections(); if (!ParseFile(target)) return false; target->DefaultAssignIndexes(); return true; } //////////////////////////////////////////////////////////////////////////////// bool DisassemblerWin32X64::ParseRelocs(std::vector *relocs) { relocs->clear(); size_t relocs_size = base_relocation_table_.size_; if (relocs_size == 0) return true; // The format of the base relocation table is a sequence of variable sized // IMAGE_BASE_RELOCATION blocks. Search for // "The format of the base relocation data is somewhat quirky" // at http://msdn.microsoft.com/en-us/library/ms809762.aspx const uint8* relocs_start = RVAToPointer(base_relocation_table_.address_); const uint8* relocs_end = relocs_start + relocs_size; // Make sure entire base relocation table is within the buffer. if (relocs_start < start() || relocs_start >= end() || relocs_end <= start() || relocs_end > end()) { return Bad(".relocs outside image"); } const uint8* block = relocs_start; // Walk the variable sized blocks. while (block + 8 < relocs_end) { RVA page_rva = ReadU32(block, 0); uint32 size = ReadU32(block, 4); if (size < 8 || // Size includes header ... size % 4 != 0) // ... and is word aligned. return Bad("unreasonable relocs block"); const uint8* end_entries = block + size; if (end_entries <= block || end_entries <= start() || end_entries > end()) return Bad(".relocs block outside image"); // Walk through the two-byte entries. for (const uint8* p = block + 8; p < end_entries; p += 2) { uint16 entry = ReadU16(p, 0); int type = entry >> 12; int offset = entry & 0xFFF; RVA rva = page_rva + offset; // TODO(sebmarchand): Skip the relocs that live outside of the image. See // the version of this function in disassembler_win32_x86.cc. if (type == 10) { // IMAGE_REL_BASED_DIR64 relocs->push_back(rva); } else if (type == 0) { // IMAGE_REL_BASED_ABSOLUTE // Ignore, used as padding. } else { // Does not occur in Windows x64 executables. return Bad("unknown type of reloc"); } } block += size; } std::sort(relocs->begin(), relocs->end()); return true; } const Section* DisassemblerWin32X64::RVAToSection(RVA rva) const { for (int i = 0; i < number_of_sections_; i++) { const Section* section = §ions_[i]; uint32 offset = rva - section->virtual_address; if (offset < section->virtual_size) { return section; } } return NULL; } int DisassemblerWin32X64::RVAToFileOffset(RVA rva) const { const Section* section = RVAToSection(rva); if (section) { uint32 offset = rva - section->virtual_address; if (offset < section->size_of_raw_data) { return section->file_offset_of_raw_data + offset; } else { return kNoOffset; // In section but not in file (e.g. uninit data). } } // Small RVA values point into the file header in the loaded image. // RVA 0 is the module load address which Windows uses as the module handle. // RVA 2 sometimes occurs, I'm not sure what it is, but it would map into the // DOS header. if (rva == 0 || rva == 2) return rva; NOTREACHED(); return kNoOffset; } const uint8* DisassemblerWin32X64::RVAToPointer(RVA rva) const { int file_offset = RVAToFileOffset(rva); if (file_offset == kNoOffset) return NULL; else return OffsetToPointer(file_offset); } std::string DisassemblerWin32X64::SectionName(const Section* section) { if (section == NULL) return ""; char name[9]; memcpy(name, section->name, 8); name[8] = '\0'; // Ensure termination. return name; } CheckBool DisassemblerWin32X64::ParseFile(AssemblyProgram* program) { // Walk all the bytes in the file, whether or not in a section. uint32 file_offset = 0; while (file_offset < length()) { const Section* section = FindNextSection(file_offset); if (section == NULL) { // No more sections. There should not be extra stuff following last // section. // ParseNonSectionFileRegion(file_offset, pe_info().length(), program); break; } if (file_offset < section->file_offset_of_raw_data) { uint32 section_start_offset = section->file_offset_of_raw_data; if(!ParseNonSectionFileRegion(file_offset, section_start_offset, program)) return false; file_offset = section_start_offset; } uint32 end = file_offset + section->size_of_raw_data; if (!ParseFileRegion(section, file_offset, end, program)) return false; file_offset = end; } #if COURGETTE_HISTOGRAM_TARGETS HistogramTargets("abs32 relocs", abs32_target_rvas_); HistogramTargets("rel32 relocs", rel32_target_rvas_); #endif return true; } bool DisassemblerWin32X64::ParseAbs32Relocs() { abs32_locations_.clear(); if (!ParseRelocs(&abs32_locations_)) return false; #if COURGETTE_HISTOGRAM_TARGETS for (size_t i = 0; i < abs32_locations_.size(); ++i) { RVA rva = abs32_locations_[i]; // The 4 bytes at the relocation are a reference to some address. uint32 target_address = Read32LittleEndian(RVAToPointer(rva)); ++abs32_target_rvas_[target_address - image_base()]; } #endif return true; } void DisassemblerWin32X64::ParseRel32RelocsFromSections() { uint32 file_offset = 0; while (file_offset < length()) { const Section* section = FindNextSection(file_offset); if (section == NULL) break; if (file_offset < section->file_offset_of_raw_data) file_offset = section->file_offset_of_raw_data; ParseRel32RelocsFromSection(section); file_offset += section->size_of_raw_data; } std::sort(rel32_locations_.begin(), rel32_locations_.end()); #if COURGETTE_HISTOGRAM_TARGETS VLOG(1) << "abs32_locations_ " << abs32_locations_.size() << "\nrel32_locations_ " << rel32_locations_.size() << "\nabs32_target_rvas_ " << abs32_target_rvas_.size() << "\nrel32_target_rvas_ " << rel32_target_rvas_.size(); int common = 0; std::map::iterator abs32_iter = abs32_target_rvas_.begin(); std::map::iterator rel32_iter = rel32_target_rvas_.begin(); while (abs32_iter != abs32_target_rvas_.end() && rel32_iter != rel32_target_rvas_.end()) { if (abs32_iter->first < rel32_iter->first) ++abs32_iter; else if (rel32_iter->first < abs32_iter->first) ++rel32_iter; else { ++common; ++abs32_iter; ++rel32_iter; } } VLOG(1) << "common " << common; #endif } void DisassemblerWin32X64::ParseRel32RelocsFromSection(const Section* section) { // TODO(sra): use characteristic. bool isCode = strcmp(section->name, ".text") == 0; if (!isCode) return; uint32 start_file_offset = section->file_offset_of_raw_data; uint32 end_file_offset = start_file_offset + section->size_of_raw_data; RVA relocs_start_rva = base_relocation_table().address_; const uint8* start_pointer = OffsetToPointer(start_file_offset); const uint8* end_pointer = OffsetToPointer(end_file_offset); RVA start_rva = FileOffsetToRVA(start_file_offset); RVA end_rva = start_rva + section->virtual_size; // Quick way to convert from Pointer to RVA within a single Section is to // subtract 'pointer_to_rva'. const uint8* const adjust_pointer_to_rva = start_pointer - start_rva; std::vector::iterator abs32_pos = abs32_locations_.begin(); // Find the rel32 relocations. const uint8* p = start_pointer; while (p < end_pointer) { RVA current_rva = static_cast(p - adjust_pointer_to_rva); if (current_rva == relocs_start_rva) { uint32 relocs_size = base_relocation_table().size_; if (relocs_size) { p += relocs_size; continue; } } //while (abs32_pos != abs32_locations_.end() && *abs32_pos < current_rva) // ++abs32_pos; // Heuristic discovery of rel32 locations in instruction stream: are the // next few bytes the start of an instruction containing a rel32 // addressing mode? const uint8* rel32 = NULL; bool is_rip_relative = false; if (p + 5 <= end_pointer) { if (*p == 0xE8 || *p == 0xE9) // jmp rel32 and call rel32 rel32 = p + 1; } if (p + 6 <= end_pointer) { if (*p == 0x0F && (*(p + 1) & 0xF0) == 0x80) { // Jcc long form if (p[1] != 0x8A && p[1] != 0x8B) // JPE/JPO unlikely rel32 = p + 2; } else if (*p == 0xFF && (*(p + 1) == 0x15 || *(p + 1) == 0x25)) { // rip relative call/jmp rel32 = p + 2; is_rip_relative = true; } } if (p + 7 <= end_pointer) { if ((*p & 0xFB) == 0x48 && *(p + 1) == 0x8D && (*(p + 2) & 0xC7) == 0x05) { // rip relative lea rel32 = p + 3; is_rip_relative = true; } else if ((*p & 0xFB) == 0x48 && *(p + 1) == 0x8B && (*(p + 2) & 0xC7) == 0x05) { // rip relative mov rel32 = p + 3; is_rip_relative = true; } } if (rel32) { RVA rel32_rva = static_cast(rel32 - adjust_pointer_to_rva); // Is there an abs32 reloc overlapping the candidate? while (abs32_pos != abs32_locations_.end() && *abs32_pos < rel32_rva - 3) ++abs32_pos; // Now: (*abs32_pos > rel32_rva - 4) i.e. the lowest addressed 4-byte // region that could overlap rel32_rva. if (abs32_pos != abs32_locations_.end()) { if (*abs32_pos < rel32_rva + 4) { // Beginning of abs32 reloc is before end of rel32 reloc so they // overlap. Skip four bytes past the abs32 reloc. p += (*abs32_pos + 4) - current_rva; continue; } } RVA target_rva = rel32_rva + 4 + Read32LittleEndian(rel32); // To be valid, rel32 target must be within image, and within this // section. if (IsValidRVA(target_rva) && (is_rip_relative || (start_rva <= target_rva && target_rva < end_rva))) { rel32_locations_.push_back(rel32_rva); #if COURGETTE_HISTOGRAM_TARGETS ++rel32_target_rvas_[target_rva]; #endif p = rel32 + 4; continue; } } p += 1; } } CheckBool DisassemblerWin32X64::ParseNonSectionFileRegion( uint32 start_file_offset, uint32 end_file_offset, AssemblyProgram* program) { if (incomplete_disassembly_) return true; if (end_file_offset > start_file_offset) { if (!program->EmitBytesInstruction(OffsetToPointer(start_file_offset), end_file_offset - start_file_offset)) { return false; } } return true; } CheckBool DisassemblerWin32X64::ParseFileRegion( const Section* section, uint32 start_file_offset, uint32 end_file_offset, AssemblyProgram* program) { RVA relocs_start_rva = base_relocation_table().address_; const uint8* start_pointer = OffsetToPointer(start_file_offset); const uint8* end_pointer = OffsetToPointer(end_file_offset); RVA start_rva = FileOffsetToRVA(start_file_offset); RVA end_rva = start_rva + section->virtual_size; // Quick way to convert from Pointer to RVA within a single Section is to // subtract 'pointer_to_rva'. const uint8* const adjust_pointer_to_rva = start_pointer - start_rva; std::vector::iterator rel32_pos = rel32_locations_.begin(); std::vector::iterator abs32_pos = abs32_locations_.begin(); if (!program->EmitOriginInstruction(start_rva)) return false; const uint8* p = start_pointer; while (p < end_pointer) { RVA current_rva = static_cast(p - adjust_pointer_to_rva); // The base relocation table is usually in the .relocs section, but it could // actually be anywhere. Make sure we skip it because we will regenerate it // during assembly. if (current_rva == relocs_start_rva) { if (!program->EmitPeRelocsInstruction()) return false; uint32 relocs_size = base_relocation_table().size_; if (relocs_size) { p += relocs_size; continue; } } while (abs32_pos != abs32_locations_.end() && *abs32_pos < current_rva) ++abs32_pos; if (abs32_pos != abs32_locations_.end() && *abs32_pos == current_rva) { uint64 target_address = Read64LittleEndian(p); RVA target_rva = base::checked_cast(target_address - image_base()); // TODO(sra): target could be Label+offset. It is not clear how to guess // which it might be. We assume offset==0. if (!program->EmitAbs64(program->FindOrMakeAbs32Label(target_rva))) return false; p += 8; continue; } while (rel32_pos != rel32_locations_.end() && *rel32_pos < current_rva) ++rel32_pos; if (rel32_pos != rel32_locations_.end() && *rel32_pos == current_rva) { RVA target_rva = current_rva + 4 + Read32LittleEndian(p); if (!program->EmitRel32(program->FindOrMakeRel32Label(target_rva))) return false; p += 4; continue; } if (incomplete_disassembly_) { if ((abs32_pos == abs32_locations_.end() || end_rva <= *abs32_pos) && (rel32_pos == rel32_locations_.end() || end_rva <= *rel32_pos) && (end_rva <= relocs_start_rva || current_rva >= relocs_start_rva)) { // No more relocs in this section, don't bother encoding bytes. break; } } if (!program->EmitByteInstruction(*p)) return false; p += 1; } return true; } #if COURGETTE_HISTOGRAM_TARGETS // Histogram is printed to std::cout. It is purely for debugging the algorithm // and is only enabled manually in 'exploration' builds. I don't want to add // command-line configuration for this feature because this code has to be // small, which means compiled-out. void DisassemblerWin32X64::HistogramTargets(const char* kind, const std::map& map) { int total = 0; std::map > h; for (std::map::const_iterator p = map.begin(); p != map.end(); ++p) { h[p->second].push_back(p->first); total += p->second; } std::cout << total << " " << kind << " to " << map.size() << " unique targets" << std::endl; std::cout << "indegree: #targets-with-indegree (example)" << std::endl; const int kFirstN = 15; bool someSkipped = false; int index = 0; for (std::map >::reverse_iterator p = h.rbegin(); p != h.rend(); ++p) { ++index; if (index <= kFirstN || p->first <= 3) { if (someSkipped) { std::cout << "..." << std::endl; } size_t count = p->second.size(); std::cout << std::dec << p->first << ": " << count; if (count <= 2) { for (size_t i = 0; i < count; ++i) std::cout << " " << DescribeRVA(p->second[i]); } std::cout << std::endl; someSkipped = false; } else { someSkipped = true; } } } #endif // COURGETTE_HISTOGRAM_TARGETS // DescribeRVA is for debugging only. I would put it under #ifdef DEBUG except // that during development I'm finding I need to call it when compiled in // Release mode. Hence: // TODO(sra): make this compile only for debug mode. std::string DisassemblerWin32X64::DescribeRVA(RVA rva) const { const Section* section = RVAToSection(rva); std::ostringstream s; s << std::hex << rva; if (section) { s << " ("; s << SectionName(section) << "+" << std::hex << (rva - section->virtual_address) << ")"; } return s.str(); } const Section* DisassemblerWin32X64::FindNextSection(uint32 fileOffset) const { const Section* best = 0; for (int i = 0; i < number_of_sections_; i++) { const Section* section = §ions_[i]; if (section->size_of_raw_data > 0) { // i.e. has data in file. if (fileOffset <= section->file_offset_of_raw_data) { if (best == 0 || section->file_offset_of_raw_data < best->file_offset_of_raw_data) { best = section; } } } } return best; } RVA DisassemblerWin32X64::FileOffsetToRVA(uint32 file_offset) const { for (int i = 0; i < number_of_sections_; i++) { const Section* section = §ions_[i]; uint32 offset = file_offset - section->file_offset_of_raw_data; if (offset < section->size_of_raw_data) { return section->virtual_address + offset; } } return 0; } bool DisassemblerWin32X64::ReadDataDirectory( int index, ImageDataDirectory* directory) { if (index < number_of_data_directories_) { size_t offset = index * 8 + offset_of_data_directories_; if (offset >= size_of_optional_header_) return Bad("number of data directories inconsistent"); const uint8* data_directory = optional_header_ + offset; if (data_directory < start() || data_directory + 8 >= end()) return Bad("data directory outside image"); RVA rva = ReadU32(data_directory, 0); size_t size = ReadU32(data_directory, 4); if (size > size_of_image_) return Bad("data directory size too big"); // TODO(sra): validate RVA. directory->address_ = rva; directory->size_ = static_cast(size); return true; } else { directory->address_ = 0; directory->size_ = 0; return true; } } } // namespace courgette