// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "courgette/encoded_program.h" #include #include #include #include #include "base/environment.h" #include "base/logging.h" #include "base/memory/scoped_ptr.h" #include "base/string_util.h" #include "base/utf_string_conversions.h" #include "courgette/courgette.h" #include "courgette/streams.h" #include "courgette/types_elf.h" namespace courgette { // Stream indexes. const int kStreamMisc = 0; const int kStreamOps = 1; const int kStreamBytes = 2; const int kStreamAbs32Indexes = 3; const int kStreamRel32Indexes = 4; const int kStreamAbs32Addresses = 5; const int kStreamRel32Addresses = 6; const int kStreamCopyCounts = 7; const int kStreamOriginAddresses = kStreamMisc; const int kStreamLimit = 9; // Constructor is here rather than in the header. Although the constructor // appears to do nothing it is fact quite large because of the implicit calls to // field constructors. Ditto for the destructor. EncodedProgram::EncodedProgram() : image_base_(0) {} EncodedProgram::~EncodedProgram() {} // Serializes a vector of integral values using Varint32 coding. template CheckBool WriteVector(const V& items, SinkStream* buffer) { size_t count = items.size(); bool ok = buffer->WriteSizeVarint32(count); for (size_t i = 0; ok && i < count; ++i) { COMPILE_ASSERT(sizeof(items[0]) <= sizeof(uint32), // NOLINT T_must_fit_in_uint32); ok = buffer->WriteSizeVarint32(items[i]); } return ok; } template bool ReadVector(V* items, SourceStream* buffer) { uint32 count; if (!buffer->ReadVarint32(&count)) return false; items->clear(); bool ok = items->reserve(count); for (size_t i = 0; ok && i < count; ++i) { uint32 item; ok = buffer->ReadVarint32(&item); if (ok) ok = items->push_back(static_cast(item)); } return ok; } // Serializes a vector, using delta coding followed by Varint32 coding. template CheckBool WriteU32Delta(const V& set, SinkStream* buffer) { size_t count = set.size(); bool ok = buffer->WriteSizeVarint32(count); uint32 prev = 0; for (size_t i = 0; ok && i < count; ++i) { uint32 current = set[i]; uint32 delta = current - prev; ok = buffer->WriteVarint32(delta); prev = current; } return ok; } template static CheckBool ReadU32Delta(V* set, SourceStream* buffer) { uint32 count; if (!buffer->ReadVarint32(&count)) return false; set->clear(); bool ok = set->reserve(count); uint32 prev = 0; for (size_t i = 0; ok && i < count; ++i) { uint32 delta; ok = buffer->ReadVarint32(&delta); if (ok) { uint32 current = prev + delta; ok = set->push_back(current); prev = current; } } return ok; } // Write a vector as the byte representation of the contents. // // (This only really makes sense for a type T that has sizeof(T)==1, otherwise // serialized representation is not endian-agnostic. But it is useful to keep // the possibility of a greater size for experiments comparing Varint32 encoding // of a vector of larger integrals vs a plain form.) // template CheckBool WriteVectorU8(const V& items, SinkStream* buffer) { size_t count = items.size(); bool ok = buffer->WriteSizeVarint32(count); if (count != 0 && ok) { size_t byte_count = count * sizeof(typename V::value_type); ok = buffer->Write(static_cast(&items[0]), byte_count); } return ok; } template bool ReadVectorU8(V* items, SourceStream* buffer) { uint32 count; if (!buffer->ReadVarint32(&count)) return false; items->clear(); bool ok = items->resize(count, 0); if (ok && count != 0) { size_t byte_count = count * sizeof(typename V::value_type); return buffer->Read(static_cast(&((*items)[0])), byte_count); } return ok; } //////////////////////////////////////////////////////////////////////////////// CheckBool EncodedProgram::DefineRel32Label(int index, RVA value) { return DefineLabelCommon(&rel32_rva_, index, value); } CheckBool EncodedProgram::DefineAbs32Label(int index, RVA value) { return DefineLabelCommon(&abs32_rva_, index, value); } static const RVA kUnassignedRVA = static_cast(-1); CheckBool EncodedProgram::DefineLabelCommon(RvaVector* rvas, int index, RVA rva) { bool ok = true; if (static_cast(rvas->size()) <= index) ok = rvas->resize(index + 1, kUnassignedRVA); if (ok) { DCHECK_EQ((*rvas)[index], kUnassignedRVA) << "DefineLabel double assigned " << index; (*rvas)[index] = rva; } return ok; } void EncodedProgram::EndLabels() { FinishLabelsCommon(&abs32_rva_); FinishLabelsCommon(&rel32_rva_); } void EncodedProgram::FinishLabelsCommon(RvaVector* rvas) { // Replace all unassigned slots with the value at the previous index so they // delta-encode to zero. (There might be better values than zero. The way to // get that is have the higher level assembly program assign the unassigned // slots.) RVA previous = 0; size_t size = rvas->size(); for (size_t i = 0; i < size; ++i) { if ((*rvas)[i] == kUnassignedRVA) (*rvas)[i] = previous; else previous = (*rvas)[i]; } } CheckBool EncodedProgram::AddOrigin(RVA origin) { return ops_.push_back(ORIGIN) && origins_.push_back(origin); } CheckBool EncodedProgram::AddCopy(uint32 count, const void* bytes) { const uint8* source = static_cast(bytes); bool ok = true; // Fold adjacent COPY instructions into one. This nearly halves the size of // an EncodedProgram with only COPY1 instructions since there are approx plain // 16 bytes per reloc. This has a working-set benefit during decompression. // For compression of files with large differences this makes a small (4%) // improvement in size. For files with small differences this degrades the // compressed size by 1.3% if (!ops_.empty()) { if (ops_.back() == COPY1) { ops_.back() = COPY; ok = copy_counts_.push_back(1); } if (ok && ops_.back() == COPY) { copy_counts_.back() += count; for (uint32 i = 0; ok && i < count; ++i) { ok = copy_bytes_.push_back(source[i]); } return ok; } } if (ok) { if (count == 1) { ok = ops_.push_back(COPY1) && copy_bytes_.push_back(source[0]); } else { ok = ops_.push_back(COPY) && copy_counts_.push_back(count); for (uint32 i = 0; ok && i < count; ++i) { ok = copy_bytes_.push_back(source[i]); } } } return ok; } CheckBool EncodedProgram::AddAbs32(int label_index) { return ops_.push_back(ABS32) && abs32_ix_.push_back(label_index); } CheckBool EncodedProgram::AddRel32(int label_index) { return ops_.push_back(REL32) && rel32_ix_.push_back(label_index); } CheckBool EncodedProgram::AddPeMakeRelocs() { return ops_.push_back(MAKE_PE_RELOCATION_TABLE); } CheckBool EncodedProgram::AddElfMakeRelocs() { return ops_.push_back(MAKE_ELF_RELOCATION_TABLE); } void EncodedProgram::DebuggingSummary() { VLOG(1) << "EncodedProgram Summary" << "\n image base " << image_base_ << "\n abs32 rvas " << abs32_rva_.size() << "\n rel32 rvas " << rel32_rva_.size() << "\n ops " << ops_.size() << "\n origins " << origins_.size() << "\n copy_counts " << copy_counts_.size() << "\n copy_bytes " << copy_bytes_.size() << "\n abs32_ix " << abs32_ix_.size() << "\n rel32_ix " << rel32_ix_.size(); } //////////////////////////////////////////////////////////////////////////////// // For algorithm refinement purposes it is useful to write subsets of the file // format. This gives us the ability to estimate the entropy of the // differential compression of the individual streams, which can provide // invaluable insights. The default, of course, is to include all the streams. // enum FieldSelect { INCLUDE_ABS32_ADDRESSES = 0x0001, INCLUDE_REL32_ADDRESSES = 0x0002, INCLUDE_ABS32_INDEXES = 0x0010, INCLUDE_REL32_INDEXES = 0x0020, INCLUDE_OPS = 0x0100, INCLUDE_BYTES = 0x0200, INCLUDE_COPY_COUNTS = 0x0400, INCLUDE_MISC = 0x1000 }; static FieldSelect GetFieldSelect() { #if 1 // TODO(sra): Use better configuration. scoped_ptr env(base::Environment::Create()); std::string s; env->GetVar("A_FIELDS", &s); if (!s.empty()) { return static_cast(wcstoul(ASCIIToWide(s).c_str(), 0, 0)); } #endif return static_cast(~0); } CheckBool EncodedProgram::WriteTo(SinkStreamSet* streams) { FieldSelect select = GetFieldSelect(); // The order of fields must be consistent in WriteTo and ReadFrom, regardless // of the streams used. The code can be configured with all kStreamXXX // constants the same. // // If we change the code to pipeline reading with assembly (to avoid temporary // storage vectors by consuming operands directly from the stream) then we // need to read the base address and the random access address tables first, // the rest can be interleaved. if (select & INCLUDE_MISC) { // TODO(sra): write 64 bits. if (!streams->stream(kStreamMisc)->WriteVarint32( static_cast(image_base_))) { return false; } } bool success = true; if (select & INCLUDE_ABS32_ADDRESSES) { success &= WriteU32Delta(abs32_rva_, streams->stream(kStreamAbs32Addresses)); } if (select & INCLUDE_REL32_ADDRESSES) { success &= WriteU32Delta(rel32_rva_, streams->stream(kStreamRel32Addresses)); } if (select & INCLUDE_MISC) success &= WriteVector(origins_, streams->stream(kStreamOriginAddresses)); if (select & INCLUDE_OPS) { // 5 for length. success &= streams->stream(kStreamOps)->Reserve(ops_.size() + 5); success &= WriteVector(ops_, streams->stream(kStreamOps)); } if (select & INCLUDE_COPY_COUNTS) success &= WriteVector(copy_counts_, streams->stream(kStreamCopyCounts)); if (select & INCLUDE_BYTES) success &= WriteVectorU8(copy_bytes_, streams->stream(kStreamBytes)); if (select & INCLUDE_ABS32_INDEXES) success &= WriteVector(abs32_ix_, streams->stream(kStreamAbs32Indexes)); if (select & INCLUDE_REL32_INDEXES) success &= WriteVector(rel32_ix_, streams->stream(kStreamRel32Indexes)); return success; } bool EncodedProgram::ReadFrom(SourceStreamSet* streams) { // TODO(sra): read 64 bits. uint32 temp; if (!streams->stream(kStreamMisc)->ReadVarint32(&temp)) return false; image_base_ = temp; if (!ReadU32Delta(&abs32_rva_, streams->stream(kStreamAbs32Addresses))) return false; if (!ReadU32Delta(&rel32_rva_, streams->stream(kStreamRel32Addresses))) return false; if (!ReadVector(&origins_, streams->stream(kStreamOriginAddresses))) return false; if (!ReadVector(&ops_, streams->stream(kStreamOps))) return false; if (!ReadVector(©_counts_, streams->stream(kStreamCopyCounts))) return false; if (!ReadVectorU8(©_bytes_, streams->stream(kStreamBytes))) return false; if (!ReadVector(&abs32_ix_, streams->stream(kStreamAbs32Indexes))) return false; if (!ReadVector(&rel32_ix_, streams->stream(kStreamRel32Indexes))) return false; // Check that streams have been completely consumed. for (int i = 0; i < kStreamLimit; ++i) { if (streams->stream(i)->Remaining() > 0) return false; } return true; } // Safe, non-throwing version of std::vector::at(). Returns 'true' for success, // 'false' for out-of-bounds index error. template bool VectorAt(const V& v, size_t index, T* output) { if (index >= v.size()) return false; *output = v[index]; return true; } CheckBool EncodedProgram::AssembleTo(SinkStream* final_buffer) { // For the most part, the assembly process walks the various tables. // ix_mumble is the index into the mumble table. size_t ix_origins = 0; size_t ix_copy_counts = 0; size_t ix_copy_bytes = 0; size_t ix_abs32_ix = 0; size_t ix_rel32_ix = 0; RVA current_rva = 0; bool pending_pe_relocation_table = false; bool pending_elf_relocation_table = false; SinkStream bytes_following_relocation_table; SinkStream* output = final_buffer; for (size_t ix_ops = 0; ix_ops < ops_.size(); ++ix_ops) { OP op = ops_[ix_ops]; switch (op) { default: return false; case ORIGIN: { RVA section_rva; if (!VectorAt(origins_, ix_origins, §ion_rva)) return false; ++ix_origins; current_rva = section_rva; break; } case COPY: { uint32 count; if (!VectorAt(copy_counts_, ix_copy_counts, &count)) return false; ++ix_copy_counts; for (uint32 i = 0; i < count; ++i) { uint8 b; if (!VectorAt(copy_bytes_, ix_copy_bytes, &b)) return false; ++ix_copy_bytes; if (!output->Write(&b, 1)) return false; } current_rva += count; break; } case COPY1: { uint8 b; if (!VectorAt(copy_bytes_, ix_copy_bytes, &b)) return false; ++ix_copy_bytes; if (!output->Write(&b, 1)) return false; current_rva += 1; break; } case REL32: { uint32 index; if (!VectorAt(rel32_ix_, ix_rel32_ix, &index)) return false; ++ix_rel32_ix; RVA rva; if (!VectorAt(rel32_rva_, index, &rva)) return false; uint32 offset = (rva - (current_rva + 4)); if (!output->Write(&offset, 4)) return false; current_rva += 4; break; } case ABS32: { uint32 index; if (!VectorAt(abs32_ix_, ix_abs32_ix, &index)) return false; ++ix_abs32_ix; RVA rva; if (!VectorAt(abs32_rva_, index, &rva)) return false; uint32 abs32 = static_cast(rva + image_base_); if (!abs32_relocs_.push_back(current_rva) || !output->Write(&abs32, 4)) return false; current_rva += 4; break; } case MAKE_PE_RELOCATION_TABLE: { // We can see the base relocation anywhere, but we only have the // information to generate it at the very end. So we divert the bytes // we are generating to a temporary stream. if (pending_pe_relocation_table) // Can't have two base relocation // tables. return false; pending_pe_relocation_table = true; output = &bytes_following_relocation_table; break; // There is a potential problem *if* the instruction stream contains // some REL32 relocations following the base relocation and in the same // section. We don't know the size of the table, so 'current_rva' will // be wrong, causing REL32 offsets to be miscalculated. This never // happens; the base relocation table is usually in a section of its // own, a data-only section, and following everything else in the // executable except some padding zero bytes. We could fix this by // emitting an ORIGIN after the MAKE_BASE_RELOCATION_TABLE. } case MAKE_ELF_RELOCATION_TABLE: { // We can see the base relocation anywhere, but we only have the // information to generate it at the very end. So we divert the bytes // we are generating to a temporary stream. if (pending_elf_relocation_table) // Can't have two relocation // tables. return false; pending_elf_relocation_table = true; output = &bytes_following_relocation_table; break; } } } if (pending_pe_relocation_table) { if (!GeneratePeRelocations(final_buffer) || !final_buffer->Append(&bytes_following_relocation_table)) return false; } if (pending_elf_relocation_table) { if (!GenerateElfRelocations(final_buffer) || !final_buffer->Append(&bytes_following_relocation_table)) return false; } // Final verification check: did we consume all lists? if (ix_copy_counts != copy_counts_.size()) return false; if (ix_copy_bytes != copy_bytes_.size()) return false; if (ix_abs32_ix != abs32_ix_.size()) return false; if (ix_rel32_ix != rel32_ix_.size()) return false; return true; } // RelocBlock has the layout of a block of relocations in the base relocation // table file format. // struct RelocBlockPOD { uint32 page_rva; uint32 block_size; uint16 relocs[4096]; // Allow up to one relocation per byte of a 4k page. }; COMPILE_ASSERT(offsetof(RelocBlockPOD, relocs) == 8, reloc_block_header_size); class RelocBlock { public: RelocBlock() { pod.page_rva = ~0; pod.block_size = 8; } void Add(uint16 item) { pod.relocs[(pod.block_size-8)/2] = item; pod.block_size += 2; } CheckBool Flush(SinkStream* buffer) WARN_UNUSED_RESULT { bool ok = true; if (pod.block_size != 8) { if (pod.block_size % 4 != 0) { // Pad to make size multiple of 4 bytes. Add(0); } ok = buffer->Write(&pod, pod.block_size); pod.block_size = 8; } return ok; } RelocBlockPOD pod; }; CheckBool EncodedProgram::GeneratePeRelocations(SinkStream* buffer) { std::sort(abs32_relocs_.begin(), abs32_relocs_.end()); RelocBlock block; bool ok = true; for (size_t i = 0; ok && i < abs32_relocs_.size(); ++i) { uint32 rva = abs32_relocs_[i]; uint32 page_rva = rva & ~0xFFF; if (page_rva != block.pod.page_rva) { ok &= block.Flush(buffer); block.pod.page_rva = page_rva; } if (ok) block.Add(0x3000 | (rva & 0xFFF)); } ok &= block.Flush(buffer); return ok; } CheckBool EncodedProgram::GenerateElfRelocations(SinkStream* buffer) { std::sort(abs32_relocs_.begin(), abs32_relocs_.end()); Elf32_Rel relocation_block; // We only handle this specific type of relocation, so far. relocation_block.r_info = R_386_RELATIVE; bool ok = true; for (size_t i = 0; ok && i < abs32_relocs_.size(); ++i) { relocation_block.r_offset = abs32_relocs_[i]; ok = buffer->Write(&relocation_block, sizeof(Elf32_Rel)); } return ok; } //////////////////////////////////////////////////////////////////////////////// Status WriteEncodedProgram(EncodedProgram* encoded, SinkStreamSet* sink) { if (!encoded->WriteTo(sink)) return C_STREAM_ERROR; return C_OK; } Status ReadEncodedProgram(SourceStreamSet* streams, EncodedProgram** output) { EncodedProgram* encoded = new EncodedProgram(); if (encoded->ReadFrom(streams)) { *output = encoded; return C_OK; } delete encoded; return C_DESERIALIZATION_FAILED; } Status Assemble(EncodedProgram* encoded, SinkStream* buffer) { bool assembled = encoded->AssembleTo(buffer); if (assembled) return C_OK; return C_ASSEMBLY_FAILED; } void DeleteEncodedProgram(EncodedProgram* encoded) { delete encoded; } } // end namespace