// Copyright (c) 2009 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "courgette/image_info.h" #include #include #include #include #include #include #include "base/logging.h" namespace courgette { std::string SectionName(const Section* section) { if (section == NULL) return ""; char name[9]; memcpy(name, section->name, 8); name[8] = '\0'; // Ensure termination. return name; } PEInfo::PEInfo() : failure_reason_("uninitialized"), start_(0), end_(0), length_(0), is_PE32_plus_(false), file_length_(0), optional_header_(NULL), size_of_optional_header_(0), offset_of_data_directories_(0), machine_type_(0), number_of_sections_(0), sections_(NULL), has_text_section_(false), size_of_code_(0), size_of_initialized_data_(0), size_of_uninitialized_data_(0), base_of_code_(0), base_of_data_(0), image_base_(0), size_of_image_(0), number_of_data_directories_(0) { } void PEInfo::Init(const void* start, size_t length) { start_ = reinterpret_cast(start); length_ = length; end_ = start_ + length_; failure_reason_ = "unparsed"; } // DescribeRVA is for debugging only. I would put it under #ifdef DEBUG except // that during development I'm finding I need to call it when compiled in // Release mode. Hence: // TODO(sra): make this compile only for debug mode. std::string PEInfo::DescribeRVA(RVA rva) const { const Section* section = RVAToSection(rva); std::ostringstream s; s << std::hex << rva; if (section) { s << " ("; s << SectionName(section) << "+" << std::hex << (rva - section->virtual_address) << ")"; } return s.str(); } const Section* PEInfo::FindNextSection(uint32 fileOffset) const { const Section* best = 0; for (int i = 0; i < number_of_sections_; i++) { const Section* section = §ions_[i]; if (section->size_of_raw_data > 0) { // i.e. has data in file. if (fileOffset <= section->file_offset_of_raw_data) { if (best == 0 || section->file_offset_of_raw_data < best->file_offset_of_raw_data) { best = section; } } } } return best; } const Section* PEInfo::RVAToSection(RVA rva) const { for (int i = 0; i < number_of_sections_; i++) { const Section* section = §ions_[i]; uint32 offset = rva - section->virtual_address; if (offset < section->virtual_size) { return section; } } return NULL; } int PEInfo::RVAToFileOffset(RVA rva) const { const Section* section = RVAToSection(rva); if (section) { uint32 offset = rva - section->virtual_address; if (offset < section->size_of_raw_data) { return section->file_offset_of_raw_data + offset; } else { return kNoOffset; // In section but not in file (e.g. uninit data). } } // Small RVA values point into the file header in the loaded image. // RVA 0 is the module load address which Windows uses as the module handle. // RVA 2 sometimes occurs, I'm not sure what it is, but it would map into the // DOS header. if (rva == 0 || rva == 2) return rva; NOTREACHED(); return kNoOffset; } const uint8* PEInfo::RVAToPointer(RVA rva) const { int file_offset = RVAToFileOffset(rva); if (file_offset == kNoOffset) return NULL; else return start_ + file_offset; } RVA PEInfo::FileOffsetToRVA(uint32 file_offset) const { for (int i = 0; i < number_of_sections_; i++) { const Section* section = §ions_[i]; uint32 offset = file_offset - section->file_offset_of_raw_data; if (offset < section->size_of_raw_data) { return section->virtual_address + offset; } } return 0; } //////////////////////////////////////////////////////////////////////////////// namespace { // Constants and offsets gleaned from WINNT.H and various articles on the // format of Windows PE executables. // This is FIELD_OFFSET(IMAGE_DOS_HEADER, e_lfanew): const size_t kOffsetOfFileAddressOfNewExeHeader = 0x3c; const uint16 kImageNtOptionalHdr32Magic = 0x10b; const uint16 kImageNtOptionalHdr64Magic = 0x20b; const size_t kSizeOfCoffHeader = 20; const size_t kOffsetOfDataDirectoryFromImageOptionalHeader32 = 96; const size_t kOffsetOfDataDirectoryFromImageOptionalHeader64 = 112; // These helper functions avoid the need for casts in the main code. inline uint16 ReadU16(const uint8* address, size_t offset) { return *reinterpret_cast(address + offset); } inline uint32 ReadU32(const uint8* address, size_t offset) { return *reinterpret_cast(address + offset); } inline uint64 ReadU64(const uint8* address, size_t offset) { return *reinterpret_cast(address + offset); } } // namespace // ParseHeader attempts to match up the buffer with the Windows data // structures that exist within a Windows 'Portable Executable' format file. // Returns 'true' if the buffer matches, and 'false' if the data looks // suspicious. Rather than try to 'map' the buffer to the numerous windows // structures, we extract the information we need into the courgette::PEInfo // structure. // bool PEInfo::ParseHeader() { if (length_ < kOffsetOfFileAddressOfNewExeHeader + 4 /*size*/) return Bad("Too small"); // Have 'MZ' magic for a DOS header? if (start_[0] != 'M' || start_[1] != 'Z') return Bad("Not MZ"); // offset from DOS header to PE header is stored in DOS header. uint32 offset = ReadU32(start_, kOffsetOfFileAddressOfNewExeHeader); const uint8* const pe_header = start_ + offset; const size_t kMinPEHeaderSize = 4 /*signature*/ + kSizeOfCoffHeader; if (pe_header <= start_ || pe_header >= end_ - kMinPEHeaderSize) return Bad("Bad offset to PE header"); if (offset % 8 != 0) return Bad("Misaligned PE header"); // The 'PE' header is an IMAGE_NT_HEADERS structure as defined in WINNT.H. // See http://msdn.microsoft.com/en-us/library/ms680336(VS.85).aspx // // The first field of the IMAGE_NT_HEADERS is the signature. if (!(pe_header[0] == 'P' && pe_header[1] == 'E' && pe_header[2] == 0 && pe_header[3] == 0)) return Bad("no PE signature"); // The second field of the IMAGE_NT_HEADERS is the COFF header. // The COFF header is also called an IMAGE_FILE_HEADER // http://msdn.microsoft.com/en-us/library/ms680313(VS.85).aspx const uint8* const coff_header = pe_header + 4; machine_type_ = ReadU16(coff_header, 0); number_of_sections_ = ReadU16(coff_header, 2); size_of_optional_header_ = ReadU16(coff_header, 16); // The rest of the IMAGE_NT_HEADERS is the IMAGE_OPTIONAL_HEADER(32|64) const uint8* const optional_header = coff_header + kSizeOfCoffHeader; optional_header_ = optional_header; if (optional_header + size_of_optional_header_ >= end_) return Bad("optional header past end of file"); // Check we can read the magic. if (size_of_optional_header_ < 2) return Bad("optional header no magic"); uint16 magic = ReadU16(optional_header, 0); if (magic == kImageNtOptionalHdr32Magic) { is_PE32_plus_ = false; offset_of_data_directories_ = kOffsetOfDataDirectoryFromImageOptionalHeader32; } else if (magic == kImageNtOptionalHdr64Magic) { is_PE32_plus_ = true; offset_of_data_directories_ = kOffsetOfDataDirectoryFromImageOptionalHeader64; } else { return Bad("unrecognized magic"); } // Check that we can read the rest of the the fixed fields. Data directories // directly follow the fixed fields of the IMAGE_OPTIONAL_HEADER. if (size_of_optional_header_ < offset_of_data_directories_) return Bad("optional header too short"); // The optional header is either an IMAGE_OPTIONAL_HEADER32 or // IMAGE_OPTIONAL_HEADER64 // http://msdn.microsoft.com/en-us/library/ms680339(VS.85).aspx // // Copy the fields we care about. size_of_code_ = ReadU32(optional_header, 4); size_of_initialized_data_ = ReadU32(optional_header, 8); size_of_uninitialized_data_ = ReadU32(optional_header, 12); base_of_code_ = ReadU32(optional_header, 20); if (is_PE32_plus_) { base_of_data_ = 0; image_base_ = ReadU64(optional_header, 24); } else { base_of_data_ = ReadU32(optional_header, 24); image_base_ = ReadU32(optional_header, 28); } size_of_image_ = ReadU32(optional_header, 56); number_of_data_directories_ = ReadU32(optional_header, (is_PE32_plus_ ? 108 : 92)); if (size_of_code_ >= length_ || size_of_initialized_data_ >= length_ || size_of_code_ + size_of_initialized_data_ >= length_) { // This validation fires on some perfectly fine executables. // return Bad("code or initialized data too big"); } // TODO(sra): we can probably get rid of most of the data directories. bool b = true; // 'b &= ...' could be short circuit 'b = b && ...' but it is not necessary // for correctness and it compiles smaller this way. b &= ReadDataDirectory(0, &export_table_); b &= ReadDataDirectory(1, &import_table_); b &= ReadDataDirectory(2, &resource_table_); b &= ReadDataDirectory(3, &exception_table_); b &= ReadDataDirectory(5, &base_relocation_table_); b &= ReadDataDirectory(11, &bound_import_table_); b &= ReadDataDirectory(12, &import_address_table_); b &= ReadDataDirectory(13, &delay_import_descriptor_); b &= ReadDataDirectory(14, &clr_runtime_header_); if (!b) { return Bad("malformed data directory"); } // Sections follow the optional header. sections_ = reinterpret_cast(optional_header + size_of_optional_header_); file_length_ = 0; for (int i = 0; i < number_of_sections_; ++i) { const Section* section = §ions_[i]; // TODO(sra): consider using the 'characteristics' field of the section // header to see if the section contains instructions. if (memcmp(section->name, ".text", 6) == 0) has_text_section_ = true; uint32 section_end = section->file_offset_of_raw_data + section->size_of_raw_data; if (section_end > file_length_) file_length_ = section_end; } failure_reason_ = NULL; return true; } bool PEInfo::ReadDataDirectory(int index, ImageDataDirectory* directory) { if (index < number_of_data_directories_) { size_t offset = index * 8 + offset_of_data_directories_; if (offset >= size_of_optional_header_) return Bad("number of data directories inconsistent"); const uint8* data_directory = optional_header_ + offset; if (data_directory < start_ || data_directory + 8 >= end_) return Bad("data directory outside image"); RVA rva = ReadU32(data_directory, 0); size_t size = ReadU32(data_directory, 4); if (size > size_of_image_) return Bad("data directory size too big"); // TODO(sra): validate RVA. directory->address_ = rva; directory->size_ = size; return true; } else { directory->address_ = 0; directory->size_ = 0; return true; } } bool PEInfo::Bad(const char* reason) { failure_reason_ = reason; return false; } //////////////////////////////////////////////////////////////////////////////// bool PEInfo::ParseRelocs(std::vector *relocs) { relocs->clear(); size_t relocs_size = base_relocation_table_.size_; if (relocs_size == 0) return true; // The format of the base relocation table is a sequence of variable sized // IMAGE_BASE_RELOCATION blocks. Search for // "The format of the base relocation data is somewhat quirky" // at http://msdn.microsoft.com/en-us/library/ms809762.aspx const uint8* start = RVAToPointer(base_relocation_table_.address_); const uint8* end = start + relocs_size; // Make sure entire base relocation table is within the buffer. if (start < start_ || start >= end_ || end <= start_ || end > end_) { return Bad(".relocs outside image"); } const uint8* block = start; // Walk the variable sized blocks. while (block + 8 < end) { RVA page_rva = ReadU32(block, 0); uint32 size = ReadU32(block, 4); if (size < 8 || // Size includes header ... size % 4 != 0) // ... and is word aligned. return Bad("unreasonable relocs block"); const uint8* end_entries = block + size; if (end_entries <= block || end_entries <= start_ || end_entries > end_) return Bad(".relocs block outside image"); // Walk through the two-byte entries. for (const uint8* p = block + 8; p < end_entries; p += 2) { uint16 entry = ReadU16(p, 0); int type = entry >> 12; int offset = entry & 0xFFF; RVA rva = page_rva + offset; if (type == 3) { // IMAGE_REL_BASED_HIGHLOW relocs->push_back(rva); } else if (type == 0) { // IMAGE_REL_BASED_ABSOLUTE // Ignore, used as padding. } else { // Does not occur in Windows x86 executables. return Bad("unknown type of reloc"); } } block += size; } std::sort(relocs->begin(), relocs->end()); return true; } } // namespace courgette