/* bsdiff.c -- Binary patch generator. Copyright 2003 Colin Percival For the terms under which this work may be distributed, please see the adjoining file "LICENSE". ChangeLog: 2005-05-05 - Use the modified header struct from bspatch.h; use 32-bit values throughout. --Benjamin Smedberg 2005-05-18 - Use the same CRC algorithm as bzip2, and leverage the CRC table provided by libbz2. --Darin Fisher 2007-11-14 - Changed to use Crc from Lzma library instead of Bzip library --Rahul Kuchhal 2009-03-31 - Change to use Streams. Added lots of comments. --Stephen Adams 2010-05-26 - Use a paged array for V and I. The address space may be too fragmented for these big arrays to be contiguous. --Stephen Adams 2015-08-03 - Extract qsufsort portion to a separate file. --Samuel Huang 2015-08-12 - Interface change to qsufsort search(). --Samuel Huang */ #include "courgette/third_party/bsdiff.h" #include #include #include "base/logging.h" #include "base/memory/scoped_ptr.h" #include "base/strings/string_util.h" #include "base/time/time.h" #include "courgette/crc.h" #include "courgette/streams.h" #include "courgette/third_party/paged_array.h" #include "courgette/third_party/qsufsort.h" namespace courgette { static CheckBool WriteHeader(SinkStream* stream, MBSPatchHeader* header) { bool ok = stream->Write(header->tag, sizeof(header->tag)); ok &= stream->WriteVarint32(header->slen); ok &= stream->WriteVarint32(header->scrc32); ok &= stream->WriteVarint32(header->dlen); return ok; } BSDiffStatus CreateBinaryPatch(SourceStream* old_stream, SourceStream* new_stream, SinkStream* patch_stream) { base::Time start_bsdiff_time = base::Time::Now(); VLOG(1) << "Start bsdiff"; size_t initial_patch_stream_length = patch_stream->Length(); SinkStreamSet patch_streams; SinkStream* control_stream_copy_counts = patch_streams.stream(0); SinkStream* control_stream_extra_counts = patch_streams.stream(1); SinkStream* control_stream_seeks = patch_streams.stream(2); SinkStream* diff_skips = patch_streams.stream(3); SinkStream* diff_bytes = patch_streams.stream(4); SinkStream* extra_bytes = patch_streams.stream(5); const uint8* old = old_stream->Buffer(); const int oldsize = static_cast(old_stream->Remaining()); uint32 pending_diff_zeros = 0; PagedArray I; PagedArray V; if (!I.Allocate(oldsize + 1)) { LOG(ERROR) << "Could not allocate I[], " << ((oldsize + 1) * sizeof(int)) << " bytes"; return MEM_ERROR; } if (!V.Allocate(oldsize + 1)) { LOG(ERROR) << "Could not allocate V[], " << ((oldsize + 1) * sizeof(int)) << " bytes"; return MEM_ERROR; } base::Time q_start_time = base::Time::Now(); qsuf::qsufsort&>(I, V, old, oldsize); VLOG(1) << " done qsufsort " << (base::Time::Now() - q_start_time).InSecondsF(); V.clear(); const uint8* newbuf = new_stream->Buffer(); const int newsize = static_cast(new_stream->Remaining()); int control_length = 0; int diff_bytes_length = 0; int diff_bytes_nonzero = 0; int extra_bytes_length = 0; // The patch format is a sequence of triples where 'copy' is // the number of bytes to copy from the old file (possibly with mistakes), // 'extra' is the number of bytes to copy from a stream of fresh bytes, and // 'seek' is an offset to move to the position to copy for the next triple. // // The invariant at the top of this loop is that we are committed to emitting // a triple for the part of |newbuf| surrounding a 'seed' match near // |lastscan|. We are searching for a second match that will be the 'seed' of // the next triple. As we scan through |newbuf|, one of four things can // happen at the current position |scan|: // // 1. We find a nice match that appears to be consistent with the current // seed. Continue scanning. It is likely that this match will become // part of the 'copy'. // // 2. We find match which does much better than extending the current seed // old match. Emit a triple for the current seed and take this match as // the new seed for a new triple. By 'much better' we remove 8 mismatched // bytes by taking the new seed. // // 3. There is not a good match. Continue scanning. These bytes will likely // become part of the 'extra'. // // 4. There is no match because we reached the end of the input, |newbuf|. // This is how the loop advances through the bytes of |newbuf|: // // ...012345678901234567890123456789... // ssssssssss Seed at |lastscan| // xxyyyxxyyxy |scan| forward, cases (3)(x) & (1)(y) // mmmmmmmm New match will start new seed case (2). // fffffffffffffff |lenf| = scan forward from |lastscan| // bbbb |lenb| = scan back from new seed |scan|. // ddddddddddddddd Emit diff bytes for the 'copy'. // xx Emit extra bytes. // ssssssssssss |lastscan = scan - lenb| is new seed. // x Cases (1) and (3) .... int lastscan = 0, lastpos = 0, lastoffset = 0; int scan = 0; int match_length = 0; while (scan < newsize) { int pos = 0; int oldscore = 0; // Count of how many bytes of the current match at |scan| // extend the match at |lastscan|. scan += match_length; for (int scsc = scan; scan < newsize; ++scan) { match_length = qsuf::search&>( I, old, oldsize, newbuf + scan, newsize - scan, &pos); for ( ; scsc < scan + match_length ; scsc++) if ((scsc + lastoffset < oldsize) && (old[scsc + lastoffset] == newbuf[scsc])) oldscore++; if ((match_length == oldscore) && (match_length != 0)) break; // Good continuing match, case (1) if (match_length > oldscore + 8) break; // New seed match, case (2) if ((scan + lastoffset < oldsize) && (old[scan + lastoffset] == newbuf[scan])) oldscore--; // Case (3) continues in this loop until we fall out of the loop (4). } if ((match_length != oldscore) || (scan == newsize)) { // Cases (2) and (4) // This next chunk of code finds the boundary between the bytes to be // copied as part of the current triple, and the bytes to be copied as // part of the next triple. The |lastscan| match is extended forwards as // far as possible provided doing to does not add too many mistakes. The // |scan| match is extended backwards in a similar way. // Extend the current match (if any) backwards. |lenb| is the maximal // extension for which less than half the byte positions in the extension // are wrong. int lenb = 0; if (scan < newsize) { // i.e. not case (4); there is a match to extend. int score = 0, Sb = 0; for (int i = 1; (scan >= lastscan + i) && (pos >= i); i++) { if (old[pos - i] == newbuf[scan - i]) score++; if (score*2 - i > Sb*2 - lenb) { Sb = score; lenb = i; } } } // Extend the lastscan match forward; |lenf| is the maximal extension for // which less than half of the byte positions in entire lastscan match are // wrong. There is a subtle point here: |lastscan| points to before the // seed match by |lenb| bytes from the previous iteration. This is why // the loop measures the total number of mistakes in the the match, not // just the from the match. int lenf = 0; { int score = 0, Sf = 0; for (int i = 0; (lastscan + i < scan) && (lastpos + i < oldsize); ) { if (old[lastpos + i] == newbuf[lastscan + i]) score++; i++; if (score*2 - i > Sf*2 - lenf) { Sf = score; lenf = i; } } } // If the extended scans overlap, pick a position in the overlap region // that maximizes the exact matching bytes. if (lastscan + lenf > scan - lenb) { int overlap = (lastscan + lenf) - (scan - lenb); int score = 0; int Ss = 0, lens = 0; for (int i = 0; i < overlap; i++) { if (newbuf[lastscan + lenf - overlap + i] == old[lastpos + lenf - overlap + i]) score++; if (newbuf[scan - lenb + i] == old[pos - lenb + i]) score--; if (score > Ss) { Ss = score; lens = i + 1; } } lenf += lens - overlap; lenb -= lens; }; for (int i = 0; i < lenf; i++) { uint8 diff_byte = newbuf[lastscan + i] - old[lastpos + i]; if (diff_byte) { ++diff_bytes_nonzero; if (!diff_skips->WriteVarint32(pending_diff_zeros)) return MEM_ERROR; pending_diff_zeros = 0; if (!diff_bytes->Write(&diff_byte, 1)) return MEM_ERROR; } else { ++pending_diff_zeros; } } int gap = (scan - lenb) - (lastscan + lenf); for (int i = 0; i < gap; i++) { if (!extra_bytes->Write(&newbuf[lastscan + lenf + i], 1)) return MEM_ERROR; } diff_bytes_length += lenf; extra_bytes_length += gap; uint32 copy_count = lenf; uint32 extra_count = gap; int32 seek_adjustment = ((pos - lenb) - (lastpos + lenf)); if (!control_stream_copy_counts->WriteVarint32(copy_count) || !control_stream_extra_counts->WriteVarint32(extra_count) || !control_stream_seeks->WriteVarint32Signed(seek_adjustment)) { return MEM_ERROR; } ++control_length; #ifdef DEBUG_bsmedberg VLOG(1) << StringPrintf("Writing a block: copy: %-8u extra: %-8u seek: " "%+-9d", copy_count, extra_count, seek_adjustment); #endif lastscan = scan - lenb; // Include the backward extension in seed. lastpos = pos - lenb; // ditto. lastoffset = lastpos - lastscan; } } if (!diff_skips->WriteVarint32(pending_diff_zeros)) return MEM_ERROR; I.clear(); MBSPatchHeader header; // The string will have a null terminator that we don't use, hence '-1'. static_assert(sizeof(MBS_PATCH_HEADER_TAG) - 1 == sizeof(header.tag), "MBS_PATCH_HEADER_TAG must match header field size"); memcpy(header.tag, MBS_PATCH_HEADER_TAG, sizeof(header.tag)); header.slen = oldsize; header.scrc32 = CalculateCrc(old, oldsize); header.dlen = newsize; if (!WriteHeader(patch_stream, &header)) return MEM_ERROR; size_t diff_skips_length = diff_skips->Length(); if (!patch_streams.CopyTo(patch_stream)) return MEM_ERROR; VLOG(1) << "Control tuples: " << control_length << " copy bytes: " << diff_bytes_length << " mistakes: " << diff_bytes_nonzero << " (skips: " << diff_skips_length << ")" << " extra bytes: " << extra_bytes_length << "\nUncompressed bsdiff patch size " << patch_stream->Length() - initial_patch_stream_length << "\nEnd bsdiff " << (base::Time::Now() - start_bsdiff_time).InSecondsF(); return OK; } } // namespace courgette