// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "crypto/p224_spake.h" #include #include #include #include "base/logging.h" #include "base/strings/string_number_conversions.h" #include "testing/gtest/include/gtest/gtest.h" namespace crypto { namespace { std::string HexEncodeString(const std::string& binary_data) { return base::HexEncode(binary_data.c_str(), binary_data.size()); } bool RunExchange(P224EncryptedKeyExchange* client, P224EncryptedKeyExchange* server, bool is_password_same) { for (;;) { std::string client_message, server_message; client_message = client->GetNextMessage(); server_message = server->GetNextMessage(); P224EncryptedKeyExchange::Result client_result, server_result; client_result = client->ProcessMessage(server_message); server_result = server->ProcessMessage(client_message); // Check that we never hit the case where only one succeeds. EXPECT_EQ(client_result == P224EncryptedKeyExchange::kResultSuccess, server_result == P224EncryptedKeyExchange::kResultSuccess); if (client_result == P224EncryptedKeyExchange::kResultFailed || server_result == P224EncryptedKeyExchange::kResultFailed) { return false; } EXPECT_EQ(is_password_same, client->GetUnverifiedKey() == server->GetUnverifiedKey()); if (client_result == P224EncryptedKeyExchange::kResultSuccess && server_result == P224EncryptedKeyExchange::kResultSuccess) { return true; } EXPECT_EQ(P224EncryptedKeyExchange::kResultPending, client_result); EXPECT_EQ(P224EncryptedKeyExchange::kResultPending, server_result); } } const char kPassword[] = "foo"; } // namespace TEST(MutualAuth, CorrectAuth) { P224EncryptedKeyExchange client( P224EncryptedKeyExchange::kPeerTypeClient, kPassword); P224EncryptedKeyExchange server( P224EncryptedKeyExchange::kPeerTypeServer, kPassword); EXPECT_TRUE(RunExchange(&client, &server, true)); EXPECT_EQ(client.GetKey(), server.GetKey()); } TEST(MutualAuth, IncorrectPassword) { P224EncryptedKeyExchange client( P224EncryptedKeyExchange::kPeerTypeClient, kPassword); P224EncryptedKeyExchange server( P224EncryptedKeyExchange::kPeerTypeServer, "wrongpassword"); EXPECT_FALSE(RunExchange(&client, &server, false)); } TEST(MutualAuth, ExpectedValues) { P224EncryptedKeyExchange client(P224EncryptedKeyExchange::kPeerTypeClient, kPassword); client.SetXForTesting("Client x"); P224EncryptedKeyExchange server(P224EncryptedKeyExchange::kPeerTypeServer, kPassword); server.SetXForTesting("Server x"); std::string client_message = client.GetNextMessage(); EXPECT_EQ( "3508EF7DECC8AB9F9C439FBB0154288BBECC0A82E8448F4CF29554EB" "BE9D486686226255EAD1D077C635B1A41F46AC91D7F7F32CED9EC3E0", HexEncodeString(client_message)); std::string server_message = server.GetNextMessage(); EXPECT_EQ( "A3088C18B75D2C2B107105661AEC85424777475EB29F1DDFB8C14AFB" "F1603D0DF38413A00F420ACF2059E7997C935F5A957A193D09A2B584", HexEncodeString(server_message)); EXPECT_EQ(P224EncryptedKeyExchange::kResultPending, client.ProcessMessage(server_message)); EXPECT_EQ(P224EncryptedKeyExchange::kResultPending, server.ProcessMessage(client_message)); EXPECT_EQ(client.GetUnverifiedKey(), server.GetUnverifiedKey()); // Must stay the same. External implementations should be able to pair with. EXPECT_EQ( "CE7CCFC435CDA4F01EC8826788B1F8B82EF7D550A34696B371096E64" "C487D4FE193F7D1A6FF6820BC7F807796BA3889E8F999BBDEFC32FFA", HexEncodeString(server.GetUnverifiedKey())); EXPECT_TRUE(RunExchange(&client, &server, true)); EXPECT_EQ(client.GetKey(), server.GetKey()); } TEST(MutualAuth, Fuzz) { static const unsigned kIterations = 40; for (unsigned i = 0; i < kIterations; i++) { P224EncryptedKeyExchange client( P224EncryptedKeyExchange::kPeerTypeClient, kPassword); P224EncryptedKeyExchange server( P224EncryptedKeyExchange::kPeerTypeServer, kPassword); // We'll only be testing small values of i, but we don't want that to bias // the test coverage. So we disperse the value of i by multiplying by the // FNV, 32-bit prime, producing a poor-man's PRNG. const uint32_t rand = i * 16777619; for (unsigned round = 0;; round++) { std::string client_message, server_message; client_message = client.GetNextMessage(); server_message = server.GetNextMessage(); if ((rand & 1) == round) { const bool server_or_client = rand & 2; std::string* m = server_or_client ? &server_message : &client_message; if (rand & 4) { // Truncate *m = m->substr(0, (i >> 3) % m->size()); } else { // Corrupt const size_t bits = m->size() * 8; const size_t bit_to_corrupt = (rand >> 3) % bits; const_cast(m->data())[bit_to_corrupt / 8] ^= 1 << (bit_to_corrupt % 8); } } P224EncryptedKeyExchange::Result client_result, server_result; client_result = client.ProcessMessage(server_message); server_result = server.ProcessMessage(client_message); // If we have corrupted anything, we expect the authentication to fail, // although one side can succeed if we happen to corrupt the second round // message to the other. ASSERT_FALSE( client_result == P224EncryptedKeyExchange::kResultSuccess && server_result == P224EncryptedKeyExchange::kResultSuccess); if (client_result == P224EncryptedKeyExchange::kResultFailed || server_result == P224EncryptedKeyExchange::kResultFailed) { break; } ASSERT_EQ(P224EncryptedKeyExchange::kResultPending, client_result); ASSERT_EQ(P224EncryptedKeyExchange::kResultPending, server_result); } } } } // namespace crypto