// Copyright (c) 2009 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "gfx/codec/png_codec.h" #include "base/logging.h" #include "base/scoped_ptr.h" #include "third_party/skia/include/core/SkBitmap.h" #include "third_party/skia/include/core/SkUnPreMultiply.h" #include "third_party/skia/include/core/SkColorPriv.h" extern "C" { #if defined(USE_SYSTEM_LIBPNG) #include #else #include "third_party/libpng/png.h" #endif } namespace gfx { namespace { // Converts BGRA->RGBA and RGBA->BGRA. void ConvertBetweenBGRAandRGBA(const unsigned char* input, int pixel_width, unsigned char* output, bool* is_opaque) { for (int x = 0; x < pixel_width; x++) { const unsigned char* pixel_in = &input[x * 4]; unsigned char* pixel_out = &output[x * 4]; pixel_out[0] = pixel_in[2]; pixel_out[1] = pixel_in[1]; pixel_out[2] = pixel_in[0]; pixel_out[3] = pixel_in[3]; } } void ConvertRGBAtoRGB(const unsigned char* rgba, int pixel_width, unsigned char* rgb, bool* is_opaque) { for (int x = 0; x < pixel_width; x++) { const unsigned char* pixel_in = &rgba[x * 4]; unsigned char* pixel_out = &rgb[x * 3]; pixel_out[0] = pixel_in[0]; pixel_out[1] = pixel_in[1]; pixel_out[2] = pixel_in[2]; } } void ConvertRGBtoSkia(const unsigned char* rgb, int pixel_width, unsigned char* rgba, bool* is_opaque) { for (int x = 0; x < pixel_width; x++) { const unsigned char* pixel_in = &rgb[x * 3]; uint32_t* pixel_out = reinterpret_cast(&rgba[x * 4]); *pixel_out = SkPackARGB32(0xFF, pixel_in[0], pixel_in[1], pixel_in[2]); } } void ConvertRGBAtoSkia(const unsigned char* rgb, int pixel_width, unsigned char* rgba, bool* is_opaque) { int total_length = pixel_width * 4; for (int x = 0; x < total_length; x += 4) { const unsigned char* pixel_in = &rgb[x]; uint32_t* pixel_out = reinterpret_cast(&rgba[x]); unsigned char alpha = pixel_in[3]; if (alpha != 255) { *is_opaque = false; *pixel_out = SkPreMultiplyARGB(alpha, pixel_in[0], pixel_in[1], pixel_in[2]); } else { *pixel_out = SkPackARGB32(alpha, pixel_in[0], pixel_in[1], pixel_in[2]); } } } void ConvertSkiatoRGB(const unsigned char* skia, int pixel_width, unsigned char* rgb, bool* is_opaque) { for (int x = 0; x < pixel_width; x++) { const uint32_t pixel_in = *reinterpret_cast(&skia[x * 4]); unsigned char* pixel_out = &rgb[x * 3]; int alpha = SkGetPackedA32(pixel_in); if (alpha != 0 && alpha != 255) { SkColor unmultiplied = SkUnPreMultiply::PMColorToColor(pixel_in); pixel_out[0] = SkColorGetR(unmultiplied); pixel_out[1] = SkColorGetG(unmultiplied); pixel_out[2] = SkColorGetB(unmultiplied); } else { pixel_out[0] = SkGetPackedR32(pixel_in); pixel_out[1] = SkGetPackedG32(pixel_in); pixel_out[2] = SkGetPackedB32(pixel_in); } } } void ConvertSkiatoRGBA(const unsigned char* skia, int pixel_width, unsigned char* rgba, bool* is_opaque) { int total_length = pixel_width * 4; for (int i = 0; i < total_length; i += 4) { const uint32_t pixel_in = *reinterpret_cast(&skia[i]); // Pack the components here. int alpha = SkGetPackedA32(pixel_in); if (alpha != 0 && alpha != 255) { SkColor unmultiplied = SkUnPreMultiply::PMColorToColor(pixel_in); rgba[i + 0] = SkColorGetR(unmultiplied); rgba[i + 1] = SkColorGetG(unmultiplied); rgba[i + 2] = SkColorGetB(unmultiplied); rgba[i + 3] = alpha; } else { rgba[i + 0] = SkGetPackedR32(pixel_in); rgba[i + 1] = SkGetPackedG32(pixel_in); rgba[i + 2] = SkGetPackedB32(pixel_in); rgba[i + 3] = alpha; } } } } // namespace // Decoder -------------------------------------------------------------------- // // This code is based on WebKit libpng interface (PNGImageDecoder), which is // in turn based on the Mozilla png decoder. namespace { // Gamma constants: We assume we're on Windows which uses a gamma of 2.2. const double kMaxGamma = 21474.83; // Maximum gamma accepted by png library. const double kDefaultGamma = 2.2; const double kInverseGamma = 1.0 / kDefaultGamma; class PngDecoderState { public: // Output is a vector. PngDecoderState(PNGCodec::ColorFormat ofmt, std::vector* o) : output_format(ofmt), output_channels(0), bitmap(NULL), is_opaque(true), output(o), row_converter(NULL), width(0), height(0), done(false) { } // Output is an SkBitmap. explicit PngDecoderState(SkBitmap* skbitmap) : output_format(PNGCodec::FORMAT_SkBitmap), output_channels(0), bitmap(skbitmap), is_opaque(true), output(NULL), row_converter(NULL), width(0), height(0), done(false) { } PNGCodec::ColorFormat output_format; int output_channels; // An incoming SkBitmap to write to. If NULL, we write to output instead. SkBitmap* bitmap; // Used during the reading of an SkBitmap. Defaults to true until we see a // pixel with anything other than an alpha of 255. bool is_opaque; // The other way to decode output, where we write into an intermediary buffer // instead of directly to an SkBitmap. std::vector* output; // Called to convert a row from the library to the correct output format. // When NULL, no conversion is necessary. void (*row_converter)(const unsigned char* in, int w, unsigned char* out, bool* is_opaque); // Size of the image, set in the info callback. int width; int height; // Set to true when we've found the end of the data. bool done; private: DISALLOW_COPY_AND_ASSIGN(PngDecoderState); }; void ConvertRGBtoRGBA(const unsigned char* rgb, int pixel_width, unsigned char* rgba, bool* is_opaque) { for (int x = 0; x < pixel_width; x++) { const unsigned char* pixel_in = &rgb[x * 3]; unsigned char* pixel_out = &rgba[x * 4]; pixel_out[0] = pixel_in[0]; pixel_out[1] = pixel_in[1]; pixel_out[2] = pixel_in[2]; pixel_out[3] = 0xff; } } void ConvertRGBtoBGRA(const unsigned char* rgb, int pixel_width, unsigned char* bgra, bool* is_opaque) { for (int x = 0; x < pixel_width; x++) { const unsigned char* pixel_in = &rgb[x * 3]; unsigned char* pixel_out = &bgra[x * 4]; pixel_out[0] = pixel_in[2]; pixel_out[1] = pixel_in[1]; pixel_out[2] = pixel_in[0]; pixel_out[3] = 0xff; } } // Called when the png header has been read. This code is based on the WebKit // PNGImageDecoder void DecodeInfoCallback(png_struct* png_ptr, png_info* info_ptr) { PngDecoderState* state = static_cast( png_get_progressive_ptr(png_ptr)); int bit_depth, color_type, interlace_type, compression_type; int filter_type, channels; png_uint_32 w, h; png_get_IHDR(png_ptr, info_ptr, &w, &h, &bit_depth, &color_type, &interlace_type, &compression_type, &filter_type); // Bounds check. When the image is unreasonably big, we'll error out and // end up back at the setjmp call when we set up decoding. "Unreasonably big" // means "big enough that w * h * 32bpp might overflow an int"; we choose this // threshold to match WebKit and because a number of places in code assume // that an image's size (in bytes) fits in a (signed) int. unsigned long long total_size = static_cast(w) * static_cast(h); if (total_size > ((1 << 29) - 1)) longjmp(png_jmpbuf(png_ptr), 1); state->width = static_cast(w); state->height = static_cast(h); // Expand to ensure we use 24-bit for RGB and 32-bit for RGBA. if (color_type == PNG_COLOR_TYPE_PALETTE || (color_type == PNG_COLOR_TYPE_GRAY && bit_depth < 8)) png_set_expand(png_ptr); // Transparency for paletted images. if (png_get_valid(png_ptr, info_ptr, PNG_INFO_tRNS)) png_set_expand(png_ptr); // Convert 16-bit to 8-bit. if (bit_depth == 16) png_set_strip_16(png_ptr); // Expand grayscale to RGB. if (color_type == PNG_COLOR_TYPE_GRAY || color_type == PNG_COLOR_TYPE_GRAY_ALPHA) png_set_gray_to_rgb(png_ptr); // Deal with gamma and keep it under our control. double gamma; if (png_get_gAMA(png_ptr, info_ptr, &gamma)) { if (gamma <= 0.0 || gamma > kMaxGamma) { gamma = kInverseGamma; png_set_gAMA(png_ptr, info_ptr, gamma); } png_set_gamma(png_ptr, kDefaultGamma, gamma); } else { png_set_gamma(png_ptr, kDefaultGamma, kInverseGamma); } // Tell libpng to send us rows for interlaced pngs. if (interlace_type == PNG_INTERLACE_ADAM7) png_set_interlace_handling(png_ptr); // Update our info now png_read_update_info(png_ptr, info_ptr); channels = png_get_channels(png_ptr, info_ptr); // Pick our row format converter necessary for this data. if (channels == 3) { switch (state->output_format) { case PNGCodec::FORMAT_RGB: state->row_converter = NULL; // no conversion necessary state->output_channels = 3; break; case PNGCodec::FORMAT_RGBA: state->row_converter = &ConvertRGBtoRGBA; state->output_channels = 4; break; case PNGCodec::FORMAT_BGRA: state->row_converter = &ConvertRGBtoBGRA; state->output_channels = 4; break; case PNGCodec::FORMAT_SkBitmap: state->row_converter = &ConvertRGBtoSkia; state->output_channels = 4; break; default: NOTREACHED() << "Unknown output format"; break; } } else if (channels == 4) { switch (state->output_format) { case PNGCodec::FORMAT_RGB: state->row_converter = &ConvertRGBAtoRGB; state->output_channels = 3; break; case PNGCodec::FORMAT_RGBA: state->row_converter = NULL; // no conversion necessary state->output_channels = 4; break; case PNGCodec::FORMAT_BGRA: state->row_converter = &ConvertBetweenBGRAandRGBA; state->output_channels = 4; break; case PNGCodec::FORMAT_SkBitmap: state->row_converter = &ConvertRGBAtoSkia; state->output_channels = 4; break; default: NOTREACHED() << "Unknown output format"; break; } } else { NOTREACHED() << "Unknown input channels"; longjmp(png_jmpbuf(png_ptr), 1); } if (state->bitmap) { state->bitmap->setConfig(SkBitmap::kARGB_8888_Config, state->width, state->height); state->bitmap->allocPixels(); } else if (state->output) { state->output->resize( state->width * state->output_channels * state->height); } } void DecodeRowCallback(png_struct* png_ptr, png_byte* new_row, png_uint_32 row_num, int pass) { PngDecoderState* state = static_cast( png_get_progressive_ptr(png_ptr)); DCHECK(pass == 0) << "We didn't turn on interlace handling, but libpng is " "giving us interlaced data."; if (static_cast(row_num) > state->height) { NOTREACHED() << "Invalid row"; return; } unsigned char* base = NULL; if (state->bitmap) base = reinterpret_cast(state->bitmap->getAddr32(0, 0)); else if (state->output) base = &state->output->front(); unsigned char* dest = &base[state->width * state->output_channels * row_num]; if (state->row_converter) state->row_converter(new_row, state->width, dest, &state->is_opaque); else memcpy(dest, new_row, state->width * state->output_channels); } void DecodeEndCallback(png_struct* png_ptr, png_info* info) { PngDecoderState* state = static_cast( png_get_progressive_ptr(png_ptr)); // Mark the image as complete, this will tell the Decode function that we // have successfully found the end of the data. state->done = true; } // Automatically destroys the given read structs on destruction to make // cleanup and error handling code cleaner. class PngReadStructDestroyer { public: PngReadStructDestroyer(png_struct** ps, png_info** pi) : ps_(ps), pi_(pi) { } ~PngReadStructDestroyer() { png_destroy_read_struct(ps_, pi_, NULL); } private: png_struct** ps_; png_info** pi_; }; bool BuildPNGStruct(const unsigned char* input, size_t input_size, png_struct** png_ptr, png_info** info_ptr) { if (input_size < 8) return false; // Input data too small to be a png // Have libpng check the signature, it likes the first 8 bytes. if (png_sig_cmp(const_cast(input), 0, 8) != 0) return false; *png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL); if (!*png_ptr) return false; *info_ptr = png_create_info_struct(*png_ptr); if (!*info_ptr) { png_destroy_read_struct(png_ptr, NULL, NULL); return false; } return true; } } // namespace // static bool PNGCodec::Decode(const unsigned char* input, size_t input_size, ColorFormat format, std::vector* output, int* w, int* h) { png_struct* png_ptr = NULL; png_info* info_ptr = NULL; if (!BuildPNGStruct(input, input_size, &png_ptr, &info_ptr)) return false; PngReadStructDestroyer destroyer(&png_ptr, &info_ptr); if (setjmp(png_jmpbuf(png_ptr))) { // The destroyer will ensure that the structures are cleaned up in this // case, even though we may get here as a jump from random parts of the // PNG library called below. return false; } PngDecoderState state(format, output); png_set_progressive_read_fn(png_ptr, &state, &DecodeInfoCallback, &DecodeRowCallback, &DecodeEndCallback); png_process_data(png_ptr, info_ptr, const_cast(input), input_size); if (!state.done) { // Fed it all the data but the library didn't think we got all the data, so // this file must be truncated. output->clear(); return false; } *w = state.width; *h = state.height; return true; } // static bool PNGCodec::Decode(const unsigned char* input, size_t input_size, SkBitmap* bitmap) { DCHECK(bitmap); png_struct* png_ptr = NULL; png_info* info_ptr = NULL; if (!BuildPNGStruct(input, input_size, &png_ptr, &info_ptr)) return false; PngReadStructDestroyer destroyer(&png_ptr, &info_ptr); if (setjmp(png_jmpbuf(png_ptr))) { // The destroyer will ensure that the structures are cleaned up in this // case, even though we may get here as a jump from random parts of the // PNG library called below. return false; } PngDecoderState state(bitmap); png_set_progressive_read_fn(png_ptr, &state, &DecodeInfoCallback, &DecodeRowCallback, &DecodeEndCallback); png_process_data(png_ptr, info_ptr, const_cast(input), input_size); if (!state.done) { return false; } // Set the bitmap's opaqueness based on what we saw. bitmap->setIsOpaque(state.is_opaque); return true; } // static SkBitmap* PNGCodec::CreateSkBitmapFromBGRAFormat( std::vector& bgra, int width, int height) { SkBitmap* bitmap = new SkBitmap(); bitmap->setConfig(SkBitmap::kARGB_8888_Config, width, height); bitmap->allocPixels(); bool opaque = false; unsigned char* bitmap_data = reinterpret_cast(bitmap->getAddr32(0, 0)); for (int i = width * height * 4 - 4; i >= 0; i -= 4) { unsigned char alpha = bgra[i + 3]; if (!opaque && alpha != 255) { opaque = false; } bitmap_data[i + 3] = alpha; bitmap_data[i] = (bgra[i] * alpha) >> 8; bitmap_data[i + 1] = (bgra[i + 1] * alpha) >> 8; bitmap_data[i + 2] = (bgra[i + 2] * alpha) >> 8; } bitmap->setIsOpaque(opaque); return bitmap; } // Encoder -------------------------------------------------------------------- // // This section of the code is based on nsPNGEncoder.cpp in Mozilla // (Copyright 2005 Google Inc.) namespace { // Passed around as the io_ptr in the png structs so our callbacks know where // to write data. struct PngEncoderState { explicit PngEncoderState(std::vector* o) : out(o) {} std::vector* out; }; // Called by libpng to flush its internal buffer to ours. void EncoderWriteCallback(png_structp png, png_bytep data, png_size_t size) { PngEncoderState* state = static_cast(png_get_io_ptr(png)); DCHECK(state->out); size_t old_size = state->out->size(); state->out->resize(old_size + size); memcpy(&(*state->out)[old_size], data, size); } void FakeFlushCallback(png_structp png) { // We don't need to perform any flushing since we aren't doing real IO, but // we're required to provide this function by libpng. } void ConvertBGRAtoRGB(const unsigned char* bgra, int pixel_width, unsigned char* rgb, bool* is_opaque) { for (int x = 0; x < pixel_width; x++) { const unsigned char* pixel_in = &bgra[x * 4]; unsigned char* pixel_out = &rgb[x * 3]; pixel_out[0] = pixel_in[2]; pixel_out[1] = pixel_in[1]; pixel_out[2] = pixel_in[0]; } } // The type of functions usable for converting between pixel formats. typedef void (*FormatConverter)(const unsigned char* in, int w, unsigned char* out, bool* is_opaque); // libpng uses a wacky setjmp-based API, which makes the compiler nervous. // We constrain all of the calls we make to libpng where the setjmp() is in // place to this function. // Returns true on success. bool DoLibpngWrite(png_struct* png_ptr, png_info* info_ptr, PngEncoderState* state, int width, int height, int row_byte_width, const unsigned char* input, int png_output_color_type, int output_color_components, FormatConverter converter) { // Make sure to not declare any locals here -- locals in the presence // of setjmp() in C++ code makes gcc complain. if (setjmp(png_jmpbuf(png_ptr))) return false; // Set our callback for libpng to give us the data. png_set_write_fn(png_ptr, state, EncoderWriteCallback, FakeFlushCallback); png_set_IHDR(png_ptr, info_ptr, width, height, 8, png_output_color_type, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT); png_write_info(png_ptr, info_ptr); if (!converter) { // No conversion needed, give the data directly to libpng. for (int y = 0; y < height; y ++) { png_write_row(png_ptr, const_cast(&input[y * row_byte_width])); } } else { // Needs conversion using a separate buffer. unsigned char* row = new unsigned char[width * output_color_components]; for (int y = 0; y < height; y ++) { converter(&input[y * row_byte_width], width, row, NULL); png_write_row(png_ptr, row); } delete[] row; } png_write_end(png_ptr, info_ptr); return true; } } // namespace // static bool PNGCodec::Encode(const unsigned char* input, ColorFormat format, int w, int h, int row_byte_width, bool discard_transparency, std::vector* output) { // Run to convert an input row into the output row format, NULL means no // conversion is necessary. FormatConverter converter = NULL; int input_color_components, output_color_components; int png_output_color_type; switch (format) { case FORMAT_RGB: input_color_components = 3; output_color_components = 3; png_output_color_type = PNG_COLOR_TYPE_RGB; discard_transparency = false; break; case FORMAT_RGBA: input_color_components = 4; if (discard_transparency) { output_color_components = 3; png_output_color_type = PNG_COLOR_TYPE_RGB; converter = ConvertRGBAtoRGB; } else { output_color_components = 4; png_output_color_type = PNG_COLOR_TYPE_RGB_ALPHA; converter = NULL; } break; case FORMAT_BGRA: input_color_components = 4; if (discard_transparency) { output_color_components = 3; png_output_color_type = PNG_COLOR_TYPE_RGB; converter = ConvertBGRAtoRGB; } else { output_color_components = 4; png_output_color_type = PNG_COLOR_TYPE_RGB_ALPHA; converter = ConvertBetweenBGRAandRGBA; } break; case FORMAT_SkBitmap: input_color_components = 4; if (discard_transparency) { output_color_components = 3; png_output_color_type = PNG_COLOR_TYPE_RGB; converter = ConvertSkiatoRGB; } else { output_color_components = 4; png_output_color_type = PNG_COLOR_TYPE_RGB_ALPHA; converter = ConvertSkiatoRGBA; } break; default: NOTREACHED() << "Unknown pixel format"; return false; } // Row stride should be at least as long as the length of the data. DCHECK(input_color_components * w <= row_byte_width); png_struct* png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL); if (!png_ptr) return false; png_info* info_ptr = png_create_info_struct(png_ptr); if (!info_ptr) { png_destroy_write_struct(&png_ptr, NULL); return false; } PngEncoderState state(output); bool success = DoLibpngWrite(png_ptr, info_ptr, &state, w, h, row_byte_width, input, png_output_color_type, output_color_components, converter); png_destroy_write_struct(&png_ptr, &info_ptr); return success; } // static bool PNGCodec::EncodeBGRASkBitmap(const SkBitmap& input, bool discard_transparency, std::vector* output) { static const int bbp = 4; SkAutoLockPixels lock_input(input); DCHECK(input.empty() || input.bytesPerPixel() == bbp); return Encode(reinterpret_cast(input.getAddr32(0, 0)), FORMAT_SkBitmap, input.width(), input.height(), input.width() * bbp, discard_transparency, output); } } // namespace gfx