// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "gfx/icon_util.h" #include "base/file_util.h" #include "base/logging.h" #include "base/scoped_handle.h" #include "base/scoped_ptr.h" #include "gfx/size.h" #include "skia/ext/image_operations.h" #include "third_party/skia/include/core/SkBitmap.h" // Defining the dimensions for the icon images. We store only one value because // we always resize to a square image; that is, the value 48 means that we are // going to resize the given bitmap to a 48 by 48 pixels bitmap. // // The icon images appear in the icon file in same order in which their // corresponding dimensions appear in the |icon_dimensions_| array, so it is // important to keep this array sorted. Also note that the maximum icon image // size we can handle is 255 by 255. const int IconUtil::icon_dimensions_[] = { 8, // Recommended by the MSDN as a nice to have icon size. 10, // Used by the Shell (e.g. for shortcuts). 14, // Recommended by the MSDN as a nice to have icon size. 16, // Toolbar, Application and Shell icon sizes. 22, // Recommended by the MSDN as a nice to have icon size. 24, // Used by the Shell (e.g. for shortcuts). 32, // Toolbar, Dialog and Wizard icon size. 40, // Quick Launch. 48, // Alt+Tab icon size. 64, // Recommended by the MSDN as a nice to have icon size. 96, // Recommended by the MSDN as a nice to have icon size. 128 // Used by the Shell (e.g. for shortcuts). }; HICON IconUtil::CreateHICONFromSkBitmap(const SkBitmap& bitmap) { // Only 32 bit ARGB bitmaps are supported. We also try to perform as many // validations as we can on the bitmap. SkAutoLockPixels bitmap_lock(bitmap); if ((bitmap.getConfig() != SkBitmap::kARGB_8888_Config) || (bitmap.width() <= 0) || (bitmap.height() <= 0) || (bitmap.getPixels() == NULL)) { return NULL; } // We start by creating a DIB which we'll use later on in order to create // the HICON. We use BITMAPV5HEADER since the bitmap we are about to convert // may contain an alpha channel and the V5 header allows us to specify the // alpha mask for the DIB. BITMAPV5HEADER bitmap_header; InitializeBitmapHeader(&bitmap_header, bitmap.width(), bitmap.height()); void* bits; HDC hdc = ::GetDC(NULL); HBITMAP dib; dib = ::CreateDIBSection(hdc, reinterpret_cast(&bitmap_header), DIB_RGB_COLORS, &bits, NULL, 0); DCHECK(dib); ::ReleaseDC(NULL, hdc); memcpy(bits, bitmap.getPixels(), bitmap.width() * bitmap.height() * 4); // Icons are generally created using an AND and XOR masks where the AND // specifies boolean transparency (the pixel is either opaque or // transparent) and the XOR mask contains the actual image pixels. If the XOR // mask bitmap has an alpha channel, the AND monochrome bitmap won't // actually be used for computing the pixel transparency. Even though all our // bitmap has an alpha channel, Windows might not agree when all alpha values // are zero. So the monochrome bitmap is created with all pixels transparent // for this case. Otherwise, it is created with all pixels opaque. bool bitmap_has_alpha_channel = PixelsHaveAlpha( static_cast(bitmap.getPixels()), bitmap.width() * bitmap.height()); scoped_array mask_bits; if (!bitmap_has_alpha_channel) { // Bytes per line with paddings to make it word alignment. size_t bytes_per_line = (bitmap.width() + 0xF) / 16 * 2; size_t mask_bits_size = bytes_per_line * bitmap.height(); mask_bits.reset(new uint8[mask_bits_size]); DCHECK(mask_bits.get()); // Make all pixels transparent. memset(mask_bits.get(), 0xFF, mask_bits_size); } HBITMAP mono_bitmap = ::CreateBitmap(bitmap.width(), bitmap.height(), 1, 1, reinterpret_cast(mask_bits.get())); DCHECK(mono_bitmap); ICONINFO icon_info; icon_info.fIcon = TRUE; icon_info.xHotspot = 0; icon_info.yHotspot = 0; icon_info.hbmMask = mono_bitmap; icon_info.hbmColor = dib; HICON icon = ::CreateIconIndirect(&icon_info); ::DeleteObject(dib); ::DeleteObject(mono_bitmap); return icon; } SkBitmap* IconUtil::CreateSkBitmapFromHICON(HICON icon, const gfx::Size& s) { // We start with validating parameters. ICONINFO icon_info; if (!icon || !(::GetIconInfo(icon, &icon_info)) || !icon_info.fIcon || s.IsEmpty()) { return NULL; } // Allocating memory for the SkBitmap object. We are going to create an ARGB // bitmap so we should set the configuration appropriately. SkBitmap* bitmap = new SkBitmap; DCHECK(bitmap); bitmap->setConfig(SkBitmap::kARGB_8888_Config, s.width(), s.height()); bitmap->allocPixels(); bitmap->eraseARGB(0, 0, 0, 0); SkAutoLockPixels bitmap_lock(*bitmap); // Now we should create a DIB so that we can use ::DrawIconEx in order to // obtain the icon's image. BITMAPV5HEADER h; InitializeBitmapHeader(&h, s.width(), s.height()); HDC dc = ::GetDC(NULL); unsigned int* bits; HBITMAP dib = ::CreateDIBSection(dc, reinterpret_cast(&h), DIB_RGB_COLORS, reinterpret_cast(&bits), NULL, 0); DCHECK(dib); HDC dib_dc = CreateCompatibleDC(dc); DCHECK(dib_dc); ::SelectObject(dib_dc, dib); // Windows icons are defined using two different masks. The XOR mask, which // represents the icon image and an AND mask which is a monochrome bitmap // which indicates the transparency of each pixel. // // To make things more complex, the icon image itself can be an ARGB bitmap // and therefore contain an alpha channel which specifies the transparency // for each pixel. Unfortunately, there is no easy way to determine whether // or not a bitmap has an alpha channel and therefore constructing the bitmap // for the icon is nothing but straightforward. // // The idea is to read the AND mask but use it only if we know for sure that // the icon image does not have an alpha channel. The only way to tell if the // bitmap has an alpha channel is by looking through the pixels and checking // whether there are non-zero alpha bytes. // // We start by drawing the AND mask into our DIB. size_t num_pixels = s.GetArea(); memset(bits, 0, num_pixels * 4); ::DrawIconEx(dib_dc, 0, 0, icon, s.width(), s.height(), 0, NULL, DI_MASK); // Capture boolean opacity. We may not use it if we find out the bitmap has // an alpha channel. bool* opaque = new bool[num_pixels]; DCHECK(opaque); for (size_t i = 0; i < num_pixels; ++i) opaque[i] = !bits[i]; // Then draw the image itself which is really the XOR mask. memset(bits, 0, num_pixels * 4); ::DrawIconEx(dib_dc, 0, 0, icon, s.width(), s.height(), 0, NULL, DI_NORMAL); memcpy(bitmap->getPixels(), static_cast(bits), num_pixels * 4); // Finding out whether the bitmap has an alpha channel. bool bitmap_has_alpha_channel = PixelsHaveAlpha( static_cast(bitmap->getPixels()), num_pixels); // If the bitmap does not have an alpha channel, we need to build it using // the previously captured AND mask. Otherwise, we are done. if (!bitmap_has_alpha_channel) { unsigned int* p = static_cast(bitmap->getPixels()); for (size_t i = 0; i < num_pixels; ++p, ++i) { DCHECK_EQ((*p & 0xff000000), 0); if (opaque[i]) *p |= 0xff000000; else *p &= 0x00ffffff; } } delete [] opaque; ::DeleteDC(dib_dc); ::DeleteObject(dib); ::ReleaseDC(NULL, dc); return bitmap; } bool IconUtil::CreateIconFileFromSkBitmap(const SkBitmap& bitmap, const std::wstring& icon_file_name) { // Only 32 bit ARGB bitmaps are supported. We also make sure the bitmap has // been properly initialized. SkAutoLockPixels bitmap_lock(bitmap); if ((bitmap.getConfig() != SkBitmap::kARGB_8888_Config) || (bitmap.height() <= 0) || (bitmap.width() <= 0) || (bitmap.getPixels() == NULL)) { return false; } // We start by creating the file. ScopedHandle icon_file(::CreateFile(icon_file_name.c_str(), GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL)); if (icon_file.Get() == INVALID_HANDLE_VALUE) { return false; } // Creating a set of bitmaps corresponding to the icon images we'll end up // storing in the icon file. Each bitmap is created by resizing the given // bitmap to the desired size. std::vector bitmaps; CreateResizedBitmapSet(bitmap, &bitmaps); int bitmap_count = static_cast(bitmaps.size()); DCHECK_GT(bitmap_count, 0); // Computing the total size of the buffer we need in order to store the // images in the desired icon format. int buffer_size = ComputeIconFileBufferSize(bitmaps); unsigned char* buffer = new unsigned char[buffer_size]; DCHECK_NE(buffer, static_cast(NULL)); memset(buffer, 0, buffer_size); // Setting the information in the structures residing within the buffer. // First, we set the information which doesn't require iterating through the // bitmap set and then we set the bitmap specific structures. In the latter // step we also copy the actual bits. ICONDIR* icon_dir = reinterpret_cast(buffer); icon_dir->idType = kResourceTypeIcon; icon_dir->idCount = bitmap_count; int icon_dir_count = bitmap_count - 1; int offset = sizeof(ICONDIR) + (sizeof(ICONDIRENTRY) * icon_dir_count); for (int i = 0; i < bitmap_count; i++) { ICONIMAGE* image = reinterpret_cast(buffer + offset); DCHECK_LT(offset, buffer_size); int icon_image_size = 0; SetSingleIconImageInformation(bitmaps[i], i, icon_dir, image, offset, &icon_image_size); DCHECK_GT(icon_image_size, 0); offset += icon_image_size; } DCHECK_EQ(offset, buffer_size); // Finally, writing the data info the file. DWORD bytes_written; bool delete_file = false; if (!WriteFile(icon_file.Get(), buffer, buffer_size, &bytes_written, NULL) || bytes_written != buffer_size) { delete_file = true; } ::CloseHandle(icon_file.Take()); delete [] buffer; if (delete_file) { bool success = file_util::Delete(icon_file_name, false); DCHECK(success); } return !delete_file; } int IconUtil::GetIconDimensionCount() { return sizeof(icon_dimensions_) / sizeof(icon_dimensions_[0]); } bool IconUtil::PixelsHaveAlpha(const uint32* pixels, size_t num_pixels) { for (const uint32* end = pixels + num_pixels; pixels != end; ++pixels) { if ((*pixels & 0xff000000) != 0) { return true; } } return false; } void IconUtil::InitializeBitmapHeader(BITMAPV5HEADER* header, int width, int height) { DCHECK(header); memset(header, 0, sizeof(BITMAPV5HEADER)); header->bV5Size = sizeof(BITMAPV5HEADER); // Note that icons are created using top-down DIBs so we must negate the // value used for the icon's height. header->bV5Width = width; header->bV5Height = -height; header->bV5Planes = 1; header->bV5Compression = BI_RGB; // Initializing the bitmap format to 32 bit ARGB. header->bV5BitCount = 32; header->bV5RedMask = 0x00FF0000; header->bV5GreenMask = 0x0000FF00; header->bV5BlueMask = 0x000000FF; header->bV5AlphaMask = 0xFF000000; // Use the system color space. The default value is LCS_CALIBRATED_RGB, which // causes us to crash if we don't specify the approprite gammas, etc. See // and // . header->bV5CSType = LCS_WINDOWS_COLOR_SPACE; // Use a valid value for bV5Intent as 0 is not a valid one. // header->bV5Intent = LCS_GM_IMAGES; } void IconUtil::SetSingleIconImageInformation(const SkBitmap& bitmap, int index, ICONDIR* icon_dir, ICONIMAGE* icon_image, int image_offset, int* image_byte_count) { DCHECK_GE(index, 0); DCHECK_NE(icon_dir, static_cast(NULL)); DCHECK_NE(icon_image, static_cast(NULL)); DCHECK_GT(image_offset, 0); DCHECK_NE(image_byte_count, static_cast(NULL)); // We start by computing certain image values we'll use later on. int xor_mask_size; int and_mask_size; int bytes_in_resource; ComputeBitmapSizeComponents(bitmap, &xor_mask_size, &and_mask_size, &bytes_in_resource); icon_dir->idEntries[index].bWidth = static_cast(bitmap.width()); icon_dir->idEntries[index].bHeight = static_cast(bitmap.height()); icon_dir->idEntries[index].wPlanes = 1; icon_dir->idEntries[index].wBitCount = 32; icon_dir->idEntries[index].dwBytesInRes = bytes_in_resource; icon_dir->idEntries[index].dwImageOffset = image_offset; icon_image->icHeader.biSize = sizeof(BITMAPINFOHEADER); // The width field in the BITMAPINFOHEADER structure accounts for the height // of both the AND mask and the XOR mask so we need to multiply the bitmap's // height by 2. The same does NOT apply to the width field. icon_image->icHeader.biHeight = bitmap.height() * 2; icon_image->icHeader.biWidth = bitmap.width(); icon_image->icHeader.biPlanes = 1; icon_image->icHeader.biBitCount = 32; // We use a helper function for copying to actual bits from the SkBitmap // object into the appropriate space in the buffer. We use a helper function // (rather than just copying the bits) because there is no way to specify the // orientation (bottom-up vs. top-down) of a bitmap residing in a .ico file. // Thus, if we just copy the bits, we'll end up with a bottom up bitmap in // the .ico file which will result in the icon being displayed upside down. // The helper function copies the image into the buffer one scanline at a // time. // // Note that we don't need to initialize the AND mask since the memory // allocated for the icon data buffer was initialized to zero. The icon we // create will therefore use an AND mask containing only zeros, which is OK // because the underlying image has an alpha channel. An AND mask containing // only zeros essentially means we'll initially treat all the pixels as // opaque. unsigned char* image_addr = reinterpret_cast(icon_image); unsigned char* xor_mask_addr = image_addr + sizeof(BITMAPINFOHEADER); CopySkBitmapBitsIntoIconBuffer(bitmap, xor_mask_addr, xor_mask_size); *image_byte_count = bytes_in_resource; } void IconUtil::CopySkBitmapBitsIntoIconBuffer(const SkBitmap& bitmap, unsigned char* buffer, int buffer_size) { SkAutoLockPixels bitmap_lock(bitmap); unsigned char* bitmap_ptr = static_cast(bitmap.getPixels()); int bitmap_size = bitmap.height() * bitmap.width() * 4; DCHECK_EQ(buffer_size, bitmap_size); for (int i = 0; i < bitmap_size; i += bitmap.width() * 4) { memcpy(buffer + bitmap_size - bitmap.width() * 4 - i, bitmap_ptr + i, bitmap.width() * 4); } } void IconUtil::CreateResizedBitmapSet(const SkBitmap& bitmap_to_resize, std::vector* bitmaps) { DCHECK_NE(bitmaps, static_cast* >(NULL)); DCHECK_EQ(static_cast(bitmaps->size()), 0); bool inserted_original_bitmap = false; for (int i = 0; i < GetIconDimensionCount(); i++) { // If the dimensions of the bitmap we are resizing are the same as the // current dimensions, then we should insert the bitmap and not a resized // bitmap. If the bitmap's dimensions are smaller, we insert our bitmap // first so that the bitmaps we return in the vector are sorted based on // their dimensions. if (!inserted_original_bitmap) { if ((bitmap_to_resize.width() == icon_dimensions_[i]) && (bitmap_to_resize.height() == icon_dimensions_[i])) { bitmaps->push_back(bitmap_to_resize); inserted_original_bitmap = true; continue; } if ((bitmap_to_resize.width() < icon_dimensions_[i]) && (bitmap_to_resize.height() < icon_dimensions_[i])) { bitmaps->push_back(bitmap_to_resize); inserted_original_bitmap = true; } } bitmaps->push_back(skia::ImageOperations::Resize( bitmap_to_resize, skia::ImageOperations::RESIZE_LANCZOS3, icon_dimensions_[i], icon_dimensions_[i])); } if (!inserted_original_bitmap) { bitmaps->push_back(bitmap_to_resize); } } int IconUtil::ComputeIconFileBufferSize(const std::vector& set) { // We start by counting the bytes for the structures that don't depend on the // number of icon images. Note that sizeof(ICONDIR) already accounts for a // single ICONDIRENTRY structure, which is why we subtract one from the // number of bitmaps. int total_buffer_size = 0; total_buffer_size += sizeof(ICONDIR); int bitmap_count = static_cast(set.size()); total_buffer_size += sizeof(ICONDIRENTRY) * (bitmap_count - 1); int dimension_count = GetIconDimensionCount(); DCHECK_GE(bitmap_count, dimension_count); // Add the bitmap specific structure sizes. for (int i = 0; i < bitmap_count; i++) { int xor_mask_size; int and_mask_size; int bytes_in_resource; ComputeBitmapSizeComponents(set[i], &xor_mask_size, &and_mask_size, &bytes_in_resource); total_buffer_size += bytes_in_resource; } return total_buffer_size; } void IconUtil::ComputeBitmapSizeComponents(const SkBitmap& bitmap, int* xor_mask_size, int* and_mask_size, int* bytes_in_resource) { // The XOR mask size is easy to calculate since we only deal with 32bpp // images. *xor_mask_size = bitmap.width() * bitmap.height() * 4; // Computing the AND mask is a little trickier since it is a monochrome // bitmap (regardless of the number of bits per pixels used in the XOR mask). // There are two things we must make sure we do when computing the AND mask // size: // // 1. Make sure the right number of bytes is allocated for each AND mask // scan line in case the number of pixels in the image is not divisible by // 8. For example, in a 15X15 image, 15 / 8 is one byte short of // containing the number of bits we need in order to describe a single // image scan line so we need to add a byte. Thus, we need 2 bytes instead // of 1 for each scan line. // // 2. Make sure each scan line in the AND mask is 4 byte aligned (so that the // total icon image has a 4 byte alignment). In the 15X15 image example // above, we can not use 2 bytes so we increase it to the next multiple of // 4 which is 4. // // Once we compute the size for a singe AND mask scan line, we multiply that // number by the image height in order to get the total number of bytes for // the AND mask. Thus, for a 15X15 image, we need 15 * 4 which is 60 bytes // for the monochrome bitmap representing the AND mask. int and_line_length = (bitmap.width() + 7) >> 3; and_line_length = (and_line_length + 3) & ~3; *and_mask_size = and_line_length * bitmap.height(); int masks_size = *xor_mask_size + *and_mask_size; *bytes_in_resource = masks_size + sizeof(BITMAPINFOHEADER); }