// Copyright (c) 2009 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "gfx/skbitmap_operations.h" #include #include "base/logging.h" #include "third_party/skia/include/core/SkBitmap.h" #include "third_party/skia/include/core/SkCanvas.h" #include "third_party/skia/include/core/SkColorPriv.h" #include "third_party/skia/include/core/SkUnPreMultiply.h" // static SkBitmap SkBitmapOperations::CreateInvertedBitmap(const SkBitmap& image) { DCHECK(image.config() == SkBitmap::kARGB_8888_Config); SkAutoLockPixels lock_image(image); SkBitmap inverted; inverted.setConfig(SkBitmap::kARGB_8888_Config, image.width(), image.height(), 0); inverted.allocPixels(); inverted.eraseARGB(0, 0, 0, 0); for (int y = 0; y < image.height(); ++y) { uint32* image_row = image.getAddr32(0, y); uint32* dst_row = inverted.getAddr32(0, y); for (int x = 0; x < image.width(); ++x) { uint32 image_pixel = image_row[x]; dst_row[x] = (image_pixel & 0xFF000000) | (0x00FFFFFF - (image_pixel & 0x00FFFFFF)); } } return inverted; } // static SkBitmap SkBitmapOperations::CreateSuperimposedBitmap(const SkBitmap& first, const SkBitmap& second) { DCHECK(first.width() == second.width()); DCHECK(first.height() == second.height()); DCHECK(first.bytesPerPixel() == second.bytesPerPixel()); DCHECK(first.config() == SkBitmap::kARGB_8888_Config); SkAutoLockPixels lock_first(first); SkAutoLockPixels lock_second(second); SkBitmap superimposed; superimposed.setConfig(SkBitmap::kARGB_8888_Config, first.width(), first.height()); superimposed.allocPixels(); superimposed.eraseARGB(0, 0, 0, 0); SkCanvas canvas(superimposed); SkRect rect; rect.fLeft = 0; rect.fTop = 0; rect.fRight = SkIntToScalar(first.width()); rect.fBottom = SkIntToScalar(first.height()); canvas.drawBitmapRect(first, NULL, rect); canvas.drawBitmapRect(second, NULL, rect); return superimposed; } // static SkBitmap SkBitmapOperations::CreateBlendedBitmap(const SkBitmap& first, const SkBitmap& second, double alpha) { DCHECK((alpha >= 0) && (alpha <= 1)); DCHECK(first.width() == second.width()); DCHECK(first.height() == second.height()); DCHECK(first.bytesPerPixel() == second.bytesPerPixel()); DCHECK(first.config() == SkBitmap::kARGB_8888_Config); // Optimize for case where we won't need to blend anything. static const double alpha_min = 1.0 / 255; static const double alpha_max = 254.0 / 255; if (alpha < alpha_min) return first; else if (alpha > alpha_max) return second; SkAutoLockPixels lock_first(first); SkAutoLockPixels lock_second(second); SkBitmap blended; blended.setConfig(SkBitmap::kARGB_8888_Config, first.width(), first.height(), 0); blended.allocPixels(); blended.eraseARGB(0, 0, 0, 0); double first_alpha = 1 - alpha; for (int y = 0; y < first.height(); ++y) { uint32* first_row = first.getAddr32(0, y); uint32* second_row = second.getAddr32(0, y); uint32* dst_row = blended.getAddr32(0, y); for (int x = 0; x < first.width(); ++x) { uint32 first_pixel = first_row[x]; uint32 second_pixel = second_row[x]; int a = static_cast((SkColorGetA(first_pixel) * first_alpha) + (SkColorGetA(second_pixel) * alpha)); int r = static_cast((SkColorGetR(first_pixel) * first_alpha) + (SkColorGetR(second_pixel) * alpha)); int g = static_cast((SkColorGetG(first_pixel) * first_alpha) + (SkColorGetG(second_pixel) * alpha)); int b = static_cast((SkColorGetB(first_pixel) * first_alpha) + (SkColorGetB(second_pixel) * alpha)); dst_row[x] = SkColorSetARGB(a, r, g, b); } } return blended; } // static SkBitmap SkBitmapOperations::CreateMaskedBitmap(const SkBitmap& rgb, const SkBitmap& alpha) { DCHECK(rgb.width() == alpha.width()); DCHECK(rgb.height() == alpha.height()); DCHECK(rgb.bytesPerPixel() == alpha.bytesPerPixel()); DCHECK(rgb.config() == SkBitmap::kARGB_8888_Config); DCHECK(alpha.config() == SkBitmap::kARGB_8888_Config); SkBitmap masked; masked.setConfig(SkBitmap::kARGB_8888_Config, rgb.width(), rgb.height(), 0); masked.allocPixels(); masked.eraseARGB(0, 0, 0, 0); SkAutoLockPixels lock_rgb(rgb); SkAutoLockPixels lock_alpha(alpha); SkAutoLockPixels lock_masked(masked); for (int y = 0; y < masked.height(); ++y) { uint32* rgb_row = rgb.getAddr32(0, y); uint32* alpha_row = alpha.getAddr32(0, y); uint32* dst_row = masked.getAddr32(0, y); for (int x = 0; x < masked.width(); ++x) { SkColor rgb_pixel = SkUnPreMultiply::PMColorToColor(rgb_row[x]); int alpha = SkAlphaMul(SkColorGetA(rgb_pixel), SkColorGetA(alpha_row[x])); dst_row[x] = SkColorSetARGB(alpha, SkAlphaMul(SkColorGetR(rgb_pixel), alpha), SkAlphaMul(SkColorGetG(rgb_pixel), alpha), SkAlphaMul(SkColorGetB(rgb_pixel), alpha)); } } return masked; } // static SkBitmap SkBitmapOperations::CreateButtonBackground(SkColor color, const SkBitmap& image, const SkBitmap& mask) { DCHECK(image.config() == SkBitmap::kARGB_8888_Config); DCHECK(mask.config() == SkBitmap::kARGB_8888_Config); SkBitmap background; background.setConfig( SkBitmap::kARGB_8888_Config, mask.width(), mask.height(), 0); background.allocPixels(); double bg_a = SkColorGetA(color); double bg_r = SkColorGetR(color); double bg_g = SkColorGetG(color); double bg_b = SkColorGetB(color); SkAutoLockPixels lock_mask(mask); SkAutoLockPixels lock_image(image); SkAutoLockPixels lock_background(background); for (int y = 0; y < mask.height(); ++y) { uint32* dst_row = background.getAddr32(0, y); uint32* image_row = image.getAddr32(0, y % image.height()); uint32* mask_row = mask.getAddr32(0, y); for (int x = 0; x < mask.width(); ++x) { uint32 image_pixel = image_row[x % image.width()]; double img_a = SkColorGetA(image_pixel); double img_r = SkColorGetR(image_pixel); double img_g = SkColorGetG(image_pixel); double img_b = SkColorGetB(image_pixel); double img_alpha = static_cast(img_a) / 255.0; double img_inv = 1 - img_alpha; double mask_a = static_cast(SkColorGetA(mask_row[x])) / 255.0; dst_row[x] = SkColorSetARGB( static_cast(std::min(255.0, bg_a + img_a) * mask_a), static_cast(((bg_r * img_inv) + (img_r * img_alpha)) * mask_a), static_cast(((bg_g * img_inv) + (img_g * img_alpha)) * mask_a), static_cast(((bg_b * img_inv) + (img_b * img_alpha)) * mask_a)); } } return background; } // static SkBitmap SkBitmapOperations::CreateHSLShiftedBitmap( const SkBitmap& bitmap, color_utils::HSL hsl_shift) { DCHECK(bitmap.empty() == false); DCHECK(bitmap.config() == SkBitmap::kARGB_8888_Config); SkBitmap shifted; shifted.setConfig(SkBitmap::kARGB_8888_Config, bitmap.width(), bitmap.height(), 0); shifted.allocPixels(); shifted.eraseARGB(0, 0, 0, 0); shifted.setIsOpaque(false); SkAutoLockPixels lock_bitmap(bitmap); SkAutoLockPixels lock_shifted(shifted); // Loop through the pixels of the original bitmap. for (int y = 0; y < bitmap.height(); ++y) { SkPMColor* pixels = bitmap.getAddr32(0, y); SkPMColor* tinted_pixels = shifted.getAddr32(0, y); for (int x = 0; x < bitmap.width(); ++x) { tinted_pixels[x] = SkPreMultiplyColor(color_utils::HSLShift( SkUnPreMultiply::PMColorToColor(pixels[x]), hsl_shift)); } } return shifted; } // static SkBitmap SkBitmapOperations::CreateTiledBitmap(const SkBitmap& source, int src_x, int src_y, int dst_w, int dst_h) { DCHECK(source.getConfig() == SkBitmap::kARGB_8888_Config); SkBitmap cropped; cropped.setConfig(SkBitmap::kARGB_8888_Config, dst_w, dst_h, 0); cropped.allocPixels(); cropped.eraseARGB(0, 0, 0, 0); SkAutoLockPixels lock_source(source); SkAutoLockPixels lock_cropped(cropped); // Loop through the pixels of the original bitmap. for (int y = 0; y < dst_h; ++y) { int y_pix = (src_y + y) % source.height(); while (y_pix < 0) y_pix += source.height(); uint32* source_row = source.getAddr32(0, y_pix); uint32* dst_row = cropped.getAddr32(0, y); for (int x = 0; x < dst_w; ++x) { int x_pix = (src_x + x) % source.width(); while (x_pix < 0) x_pix += source.width(); dst_row[x] = source_row[x_pix]; } } return cropped; } // static SkBitmap SkBitmapOperations::DownsampleByTwoUntilSize(const SkBitmap& bitmap, int min_w, int min_h) { if ((bitmap.width() <= min_w) || (bitmap.height() <= min_h) || (min_w < 0) || (min_h < 0)) return bitmap; // Since bitmaps are refcounted, this copy will be fast. SkBitmap current = bitmap; while ((current.width() >= min_w * 2) && (current.height() >= min_h * 2) && (current.width() > 1) && (current.height() > 1)) current = DownsampleByTwo(current); return current; } // static SkBitmap SkBitmapOperations::DownsampleByTwo(const SkBitmap& bitmap) { // Handle the nop case. if ((bitmap.width() <= 1) || (bitmap.height() <= 1)) return bitmap; SkBitmap result; result.setConfig(SkBitmap::kARGB_8888_Config, (bitmap.width() + 1) / 2, (bitmap.height() + 1) / 2); result.allocPixels(); SkAutoLockPixels lock(bitmap); for (int dest_y = 0; dest_y < result.height(); ++dest_y) { for (int dest_x = 0; dest_x < result.width(); ++dest_x) { // This code is based on downsampleby2_proc32 in SkBitmap.cpp. It is very // clever in that it does two channels at once: alpha and green ("ag") // and red and blue ("rb"). Each channel gets averaged across 4 pixels // to get the result. int src_x = dest_x << 1; int src_y = dest_y << 1; const SkPMColor* cur_src = bitmap.getAddr32(src_x, src_y); SkPMColor tmp, ag, rb; // Top left pixel of the 2x2 block. tmp = *cur_src; ag = (tmp >> 8) & 0xFF00FF; rb = tmp & 0xFF00FF; if (src_x < (bitmap.width() - 1)) ++cur_src; // Top right pixel of the 2x2 block. tmp = *cur_src; ag += (tmp >> 8) & 0xFF00FF; rb += tmp & 0xFF00FF; if (src_y < (bitmap.height() - 1)) cur_src = bitmap.getAddr32(src_x, src_y + 1); else cur_src = bitmap.getAddr32(src_x, src_y); // Move back to the first. // Bottom left pixel of the 2x2 block. tmp = *cur_src; ag += (tmp >> 8) & 0xFF00FF; rb += tmp & 0xFF00FF; if (src_x < (bitmap.width() - 1)) ++cur_src; // Bottom right pixel of the 2x2 block. tmp = *cur_src; ag += (tmp >> 8) & 0xFF00FF; rb += tmp & 0xFF00FF; // Put the channels back together, dividing each by 4 to get the average. // |ag| has the alpha and green channels shifted right by 8 bits from // there they should end up, so shifting left by 6 gives them in the // correct position divided by 4. *result.getAddr32(dest_x, dest_y) = ((rb >> 2) & 0xFF00FF) | ((ag << 6) & 0xFF00FF00); } } return result; }