// Copyright (c) 2009 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "gpu/command_buffer/service/gles2_cmd_decoder.h" #include #include #include #include #include #include // NOLINT #include "base/callback.h" #include "base/linked_ptr.h" #include "base/scoped_ptr.h" #define GLES2_GPU_SERVICE 1 #include "gpu/command_buffer/common/gles2_cmd_format.h" #include "gpu/command_buffer/common/gles2_cmd_utils.h" #include "gpu/command_buffer/service/buffer_manager.h" #include "gpu/command_buffer/service/cmd_buffer_engine.h" #include "gpu/command_buffer/service/context_group.h" #include "gpu/command_buffer/service/gl_utils.h" #include "gpu/command_buffer/service/gles2_cmd_validation.h" #include "gpu/command_buffer/service/id_manager.h" #include "gpu/command_buffer/service/program_manager.h" #include "gpu/command_buffer/service/shader_manager.h" #include "gpu/command_buffer/service/texture_manager.h" #if defined(UNIT_TEST) #elif defined(OS_LINUX) // XWindowWrapper is stubbed out for unit-tests. #include "gpu/command_buffer/service/x_utils.h" #elif defined(OS_MACOSX) // The following two #includes CAN NOT go above the inclusion of // gl_utils.h and therefore glew.h regardless of what the Google C++ // style guide says. #include // NOLINT #include // NOLINT #include "base/scoped_cftyperef.h" #include "chrome/common/io_surface_support_mac.h" #endif namespace gpu { namespace gles2 { // Check that certain assumptions the code makes are true. There are places in // the code where shared memory is passed direclty to GL. Example, glUniformiv, // glShaderSource. The command buffer code assumes GLint and GLsizei (and maybe // a few others) are 32bits. If they are not 32bits the code will have to change // to call those GL functions with service side memory and then copy the results // to shared memory, converting the sizes. COMPILE_ASSERT(sizeof(GLint) == sizeof(uint32), // NOLINT GLint_not_same_size_as_uint32); COMPILE_ASSERT(sizeof(GLsizei) == sizeof(uint32), // NOLINT GLint_not_same_size_as_uint32); COMPILE_ASSERT(sizeof(GLfloat) == sizeof(float), // NOLINT GLfloat_not_same_size_as_float); // TODO(kbr): the use of this anonymous namespace core dumps the // linker on Mac OS X 10.6 when the symbol ordering file is used // namespace { // Returns the address of the first byte after a struct. template const void* AddressAfterStruct(const T& pod) { return reinterpret_cast(&pod) + sizeof(pod); } // Returns the address of the frst byte after the struct or NULL if size > // immediate_data_size. template RETURN_TYPE GetImmediateDataAs(const COMMAND_TYPE& pod, uint32 size, uint32 immediate_data_size) { return (size <= immediate_data_size) ? static_cast(const_cast(AddressAfterStruct(pod))) : NULL; } // Computes the data size for certain gl commands like glUniform. uint32 ComputeImmediateDataSize( uint32 immediate_data_size, GLuint count, size_t size, unsigned int elements_per_unit) { return count * size * elements_per_unit; } // A struct to hold info about each command. struct CommandInfo { int arg_flags; // How to handle the arguments for this command int arg_count; // How many arguments are expected for this command. }; // A table of CommandInfo for all the commands. const CommandInfo g_command_info[] = { #define GLES2_CMD_OP(name) { \ name::kArgFlags, \ sizeof(name) / sizeof(CommandBufferEntry) - 1, }, /* NOLINT */ \ GLES2_COMMAND_LIST(GLES2_CMD_OP) #undef GLES2_CMD_OP }; // } // anonymous namespace. GLES2Decoder::GLES2Decoder(ContextGroup* group) : group_(group), #if defined(UNIT_TEST) debug_(false) { #elif defined(OS_LINUX) debug_(false), window_(NULL) { #elif defined(OS_WIN) debug_(false), hwnd_(NULL) { #else debug_(false) { #endif } GLES2Decoder::~GLES2Decoder() { } // This class implements GLES2Decoder so we don't have to expose all the GLES2 // cmd stuff to outside this class. class GLES2DecoderImpl : public GLES2Decoder { public: explicit GLES2DecoderImpl(ContextGroup* group); // Info about Vertex Attributes. This is used to track what the user currently // has bound on each Vertex Attribute so that checking can be done at // glDrawXXX time. class VertexAttribInfo { public: VertexAttribInfo() : enabled_(false), size_(0), type_(0), offset_(0), real_stride_(0) { } // Returns true if this VertexAttrib can access index. bool CanAccess(GLuint index); void set_enabled(bool enabled) { enabled_ = enabled; } BufferManager::BufferInfo* buffer() const { return buffer_; } GLsizei offset() const { return offset_; } void SetInfo( BufferManager::BufferInfo* buffer, GLint size, GLenum type, GLsizei real_stride, GLsizei offset) { DCHECK_GT(real_stride, 0); buffer_ = buffer; size_ = size; type_ = type; real_stride_ = real_stride; offset_ = offset; } void ClearBuffer() { buffer_ = NULL; } private: // Whether or not this attribute is enabled. bool enabled_; // number of components (1, 2, 3, 4) GLint size_; // GL_BYTE, GL_FLOAT, etc. See glVertexAttribPointer. GLenum type_; // The offset into the buffer. GLsizei offset_; // The stride that will be used to access the buffer. This is the actual // stide, NOT the GL bogus stride. In other words there is never a stride // of 0. GLsizei real_stride_; // The buffer bound to this attribute. BufferManager::BufferInfo::Ref buffer_; }; // Overridden from AsyncAPIInterface. virtual Error DoCommand(unsigned int command, unsigned int arg_count, const void* args); // Overridden from AsyncAPIInterface. virtual const char* GetCommandName(unsigned int command_id) const; // Overridden from GLES2Decoder. virtual bool Initialize(); virtual void Destroy(); virtual bool MakeCurrent(); virtual uint32 GetServiceIdForTesting(uint32 client_id); #if defined(OS_MACOSX) // Overridden from GLES2Decoder. // The recommended usage is to call SetWindowSizeForIOSurface() first, and if // that returns 0, try calling SetWindowSizeForTransportDIB(). A return value // of 0 from SetWindowSizeForIOSurface() might mean the IOSurface API is not // available, which is true if you are not running on Max OS X 10.6 or later. // If SetWindowSizeForTransportDIB() also returns a NULL handle, then an // error has occured. virtual uint64 SetWindowSizeForIOSurface(int32 width, int32 height); virtual TransportDIB::Handle SetWindowSizeForTransportDIB(int32 width, int32 height); // |allocator| sends a message to the renderer asking for a new // TransportDIB big enough to hold the rendered bits. The parameters to the // call back are the size of the DIB and the handle (filled in on return). virtual void SetTransportDIBAllocAndFree( Callback2::Type* allocator, Callback1::Type* deallocator); #endif virtual void SetSwapBuffersCallback(Callback0::Type* callback); private: // State associated with each texture unit. struct TextureUnit { TextureUnit() : bind_target(GL_TEXTURE_2D) { } // The last target that was bound to this texture unit. GLenum bind_target; // texture currently bound to this unit's GL_TEXTURE_2D with glBindTexture TextureManager::TextureInfo::Ref bound_texture_2d; // texture currently bound to this unit's GL_TEXTURE_CUBE_MAP with // glBindTexture TextureManager::TextureInfo::Ref bound_texture_cube_map; }; friend void GLGenTexturesHelper( GLES2DecoderImpl* decoder, GLsizei n, GLuint* ids); friend void GLDeleteTexturesHelper( GLES2DecoderImpl* decoder, GLsizei n, GLuint* ids); friend void GLGenBuffersHelper( GLES2DecoderImpl* decoder, GLsizei n, GLuint* ids); friend void GLDeleteBuffersHelper( GLES2DecoderImpl* decoder, GLsizei n, GLuint* ids); // TODO(gman): Cache these pointers? IdManager* id_manager() { return group_->id_manager(); } BufferManager* buffer_manager() { return group_->buffer_manager(); } ProgramManager* program_manager() { return group_->program_manager(); } ShaderManager* shader_manager() { return group_->shader_manager(); } TextureManager* texture_manager() { return group_->texture_manager(); } bool InitPlatformSpecific(); bool InitGlew(); // Template to help call glGenXXX functions. template bool GenGLObjects(GLsizei n, const GLuint* client_ids) { DCHECK_GE(n, 0); if (!ValidateIdsAreUnused(n, client_ids)) { return false; } scoped_arraytemp(new GLuint[n]); gl_gen_function(this, n, temp.get()); return RegisterObjects(n, client_ids, temp.get()); } // Template to help call glDeleteXXX functions. template bool DeleteGLObjects(GLsizei n, const GLuint* client_ids) { DCHECK_GE(n, 0); scoped_arraytemp(new GLuint[n]); UnregisterObjects(n, client_ids, temp.get()); gl_delete_function(this, n, temp.get()); return true; } // Check that the given ids are not used. bool ValidateIdsAreUnused(GLsizei n, const GLuint* client_ids); // Register client ids with generated service ids. bool RegisterObjects( GLsizei n, const GLuint* client_ids, const GLuint* service_ids); // Unregisters client ids with service ids. void UnregisterObjects( GLsizei n, const GLuint* client_ids, GLuint* service_ids); // Creates a TextureInfo for the given texture. void CreateTextureInfo(GLuint texture) { texture_manager()->CreateTextureInfo(texture); } // Gets the texture info for the given texture. Returns NULL if none exists. TextureManager::TextureInfo* GetTextureInfo(GLuint texture) { TextureManager::TextureInfo* info = texture_manager()->GetTextureInfo(texture); return (info && !info->IsDeleted()) ? info : NULL; } // Deletes the texture info for the given texture. void RemoveTextureInfo(GLuint texture) { texture_manager()->RemoveTextureInfo(texture); } // Wrapper for CompressedTexImage2D commands. error::Error DoCompressedTexImage2D( GLenum target, GLint level, GLenum internal_format, GLsizei width, GLsizei height, GLint border, GLsizei image_size, const void* data); // Wrapper for TexImage2D commands. error::Error DoTexImage2D( GLenum target, GLint level, GLenum internal_format, GLsizei width, GLsizei height, GLint border, GLenum format, GLenum type, const void* pixels, uint32 pixels_size); // Creates a ProgramInfo for the given program. void CreateProgramInfo(GLuint program) { program_manager()->CreateProgramInfo(program); } // Gets the program info for the given program. Returns NULL if none exists. // Programs that have no had glLinkProgram succesfully called on them will // not exist. ProgramManager::ProgramInfo* GetProgramInfo(GLuint program) { ProgramManager::ProgramInfo* info = program_manager()->GetProgramInfo(program); return (info && !info->IsDeleted()) ? info : NULL; } // Deletes the program info for the given program. void RemoveProgramInfo(GLuint program) { program_manager()->RemoveProgramInfo(program); } // Creates a ShaderInfo for the given shader. void CreateShaderInfo(GLuint shader) { shader_manager()->CreateShaderInfo(shader); } // Gets the shader info for the given shader. Returns NULL if none exists. ShaderManager::ShaderInfo* GetShaderInfo(GLuint shader) { ShaderManager::ShaderInfo* info = shader_manager()->GetShaderInfo(shader); return (info && !info->IsDeleted()) ? info : NULL; } // Deletes the shader info for the given shader. void RemoveShaderInfo(GLuint shader) { shader_manager()->RemoveShaderInfo(shader); } // Creates a buffer info for the given buffer. void CreateBufferInfo(GLuint buffer) { return buffer_manager()->CreateBufferInfo(buffer); } // Gets the buffer info for the given buffer. BufferManager::BufferInfo* GetBufferInfo(GLuint buffer) { BufferManager::BufferInfo* info = buffer_manager()->GetBufferInfo(buffer); return (info && !info->IsDeleted()) ? info : NULL; } // Removes any buffers in the VertexAtrribInfos and BufferInfos. This is used // on glDeleteBuffers so we can make sure the user does not try to render // with deleted buffers. void RemoveBufferInfo(GLuint buffer_id); // Helper for glShaderSource. error::Error ShaderSourceHelper( GLuint shader, const char* data, uint32 data_size); // Wrapper for glCreateProgram void CreateProgramHelper(GLuint client_id); // Wrapper for glCreateShader void CreateShaderHelper(GLenum type, GLuint client_id); // Wrapper for glActiveTexture void DoActiveTexture(GLenum texture_unit); // Wrapper for glBindBuffer since we need to track the current targets. void DoBindBuffer(GLenum target, GLuint buffer); // Wrapper for glBindTexture since we need to track the current targets. void DoBindTexture(GLenum target, GLuint texture); // Wrapper for glCompileShader. void DoCompileShader(GLuint shader); // Wrapper for glDrawArrays. void DoDrawArrays(GLenum mode, GLint first, GLsizei count); // Wrapper for glDisableVertexAttribArray. void DoDisableVertexAttribArray(GLuint index); // Wrapper for glEnableVertexAttribArray. void DoEnableVertexAttribArray(GLuint index); // Wrapper for glGenerateMipmap void DoGenerateMipmap(GLenum target); // Wrapper for glGetShaderiv void DoGetShaderiv(GLuint shader, GLenum pname, GLint* params); // Wrapper for glGetShaderSource. void DoGetShaderSource( GLuint shader, GLsizei bufsize, GLsizei* length, char* dst); // Wrapper for glLinkProgram void DoLinkProgram(GLuint program); // Swaps the buffers (copies/renders to the current window). void DoSwapBuffers(); // Wrappers for glTexParameter functions. void DoTexParameterf(GLenum target, GLenum pname, GLfloat param); void DoTexParameteri(GLenum target, GLenum pname, GLint param); void DoTexParameterfv(GLenum target, GLenum pname, const GLfloat* params); void DoTexParameteriv(GLenum target, GLenum pname, const GLint* params); // Wrappers for glUniform1i and glUniform1iv as according to the GLES2 // spec only these 2 functions can be used to set sampler uniforms. void DoUniform1i(GLint location, GLint v0); void DoUniform1iv(GLint location, GLsizei count, const GLint *value); // Wrapper for glUseProgram void DoUseProgram(GLuint program); // Gets the GLError through our wrapper. GLenum GetGLError(); // Sets our wrapper for the GLError. void SetGLError(GLenum error); // Copies the real GL errors to the wrapper. This is so we can // make sure there are no native GL errors before calling some GL function // so that on return we know any error generated was for that specific // command. void CopyRealGLErrorsToWrapper(); // Checks if the current program and vertex attributes are valid for drawing. bool IsDrawValid(GLuint max_vertex_accessed); void SetBlackTextureForNonRenderableTextures( bool* has_non_renderable_textures); void RestoreStateForNonRenderableTextures(); // Gets the buffer id for a given target. BufferManager::BufferInfo* GetBufferInfoForTarget(GLenum target) { DCHECK(target == GL_ARRAY_BUFFER || target == GL_ELEMENT_ARRAY_BUFFER); BufferManager::BufferInfo* info = target == GL_ARRAY_BUFFER ? bound_array_buffer_ : bound_element_array_buffer_; return (info && !info->IsDeleted()) ? info : NULL; } // Gets the texture id for a given target. TextureManager::TextureInfo* GetTextureInfoForTarget(GLenum target) { TextureUnit& unit = texture_units_[active_texture_unit_]; TextureManager::TextureInfo* info = NULL; switch (target) { case GL_TEXTURE_2D: info = unit.bound_texture_2d; break; case GL_TEXTURE_CUBE_MAP: case GL_TEXTURE_CUBE_MAP_POSITIVE_X: case GL_TEXTURE_CUBE_MAP_NEGATIVE_X: case GL_TEXTURE_CUBE_MAP_POSITIVE_Y: case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y: case GL_TEXTURE_CUBE_MAP_POSITIVE_Z: case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z: info = unit.bound_texture_cube_map; break; // Note: If we ever support TEXTURE_RECTANGLE as a target, be sure to // track |texture_| with the currently bound TEXTURE_RECTANGLE texture, // because |texture_| is used by the FBO rendering mechanism for readback // to the bits that get sent to the browser. default: NOTREACHED(); return NULL; } return (info && !info->IsDeleted()) ? info : NULL; } // Validates the program and location for a glGetUniform call and returns // a SizeResult setup to receive the result. Returns true if glGetUniform // should be called. bool GetUniformSetup( GLuint program, GLint location, uint32 shm_id, uint32 shm_offset, error::Error* error, GLuint* service_id, void** result); // Generate a member function prototype for each command in an automated and // typesafe way. #define GLES2_CMD_OP(name) \ Error Handle ## name( \ uint32 immediate_data_size, \ const gles2::name& args); \ GLES2_COMMAND_LIST(GLES2_CMD_OP) #undef GLES2_CMD_OP #if defined(OS_MACOSX) // Helper function to generate names for the backing texture, render buffers // and FBO. On return, the resulting buffer names can be attached to |fbo_|. // |target| is the target type for the color buffer. void AllocateRenderBuffers(GLenum target, int32 width, int32 height); // Helper function to attach the buffers previously allocated by a call to // AllocateRenderBuffers(). On return, |fbo_| can be used for // rendering. |target| must be the same value as used in the call to // AllocateRenderBuffers(). Returns |true| if the resulting framebuffer // object is valid. bool SetupFrameBufferObject(GLenum target); #endif // Current GL error bits. uint32 error_bits_; // Util to help with GL. GLES2Util util_; // pack alignment as last set by glPixelStorei GLint pack_alignment_; // unpack alignment as last set by glPixelStorei GLint unpack_alignment_; // The currently bound array buffer. If this is 0 it is illegal to call // glVertexAttribPointer. BufferManager::BufferInfo::Ref bound_array_buffer_; // The currently bound element array buffer. If this is 0 it is illegal // to call glDrawElements. BufferManager::BufferInfo::Ref bound_element_array_buffer_; // Info for each vertex attribute saved so we can check at glDrawXXX time // if it is safe to draw. scoped_array vertex_attrib_infos_; // Current active texture by 0 - n index. // In other words, if we call glActiveTexture(GL_TEXTURE2) this value would // be 2. GLuint active_texture_unit_; // Which textures are bound to texture units through glActiveTexture. scoped_array texture_units_; // Black (0,0,0,0) textures for when non-renderable textures are used. // NOTE: There is no corresponding TextureInfo for these textures. // TextureInfos are only for textures the client side can access. GLuint black_2d_texture_id_; GLuint black_cube_texture_id_; // The program in use by glUseProgram ProgramManager::ProgramInfo::Ref current_program_; #if defined(UNIT_TEST) #elif defined(OS_WIN) HDC device_context_; HGLRC gl_context_; #elif defined(OS_MACOSX) CGLContextObj gl_context_; CGLPBufferObj pbuffer_; // Either |io_surface_| or |transport_dib_| is a valid pointer, but not both. // |io_surface_| is non-NULL if the IOSurface APIs are supported (Mac OS X // 10.6 and later). // TODO(dspringer,kbr): Should the GPU backing store be encapsulated in its // own class so all this implementation detail is hidden? scoped_cftyperef io_surface_; // TODO(dspringer): If we end up keeping this TransportDIB mechanism, this // should really be a scoped_ptr_malloc<>, with a deallocate functor that // runs |dib_free_callback_|. I was not able to figure out how to // make this work (or even compile). scoped_ptr transport_dib_; int32 surface_width_; int32 surface_height_; GLuint texture_; GLuint fbo_; GLuint depth_stencil_renderbuffer_; // For tracking whether the default framebuffer / renderbuffer or // ones created by the end user are currently bound GLuint bound_fbo_; GLuint bound_renderbuffer_; // Allocate a TransportDIB in the renderer. scoped_ptr::Type> dib_alloc_callback_; scoped_ptr::Type> dib_free_callback_; #endif bool anti_aliased_; scoped_ptr swap_buffers_callback_; DISALLOW_COPY_AND_ASSIGN(GLES2DecoderImpl); }; GLES2Decoder* GLES2Decoder::Create(ContextGroup* group) { return new GLES2DecoderImpl(group); } GLES2DecoderImpl::GLES2DecoderImpl(ContextGroup* group) : GLES2Decoder(group), error_bits_(0), util_(0), // TODO(gman): Set to actual num compress texture formats. pack_alignment_(4), unpack_alignment_(4), active_texture_unit_(0), black_2d_texture_id_(0), black_cube_texture_id_(0), #if defined(UNIT_TEST) #elif defined(OS_WIN) device_context_(NULL), gl_context_(NULL), #elif defined(OS_MACOSX) gl_context_(NULL), pbuffer_(NULL), surface_width_(0), surface_height_(0), texture_(0), fbo_(0), depth_stencil_renderbuffer_(0), bound_fbo_(0), bound_renderbuffer_(0), #endif anti_aliased_(false) { } bool GLES2DecoderImpl::Initialize() { bool success = false; if (InitPlatformSpecific()) { if (MakeCurrent()) { if (InitGlew()) { CHECK_GL_ERROR(); success = group_->Initialize(); if (success) { vertex_attrib_infos_.reset( new VertexAttribInfo[group_->max_vertex_attribs()]); texture_units_.reset( new TextureUnit[group_->max_texture_units()]); GLuint ids[2]; glGenTextures(2, ids); // Make black textures for replacing non-renderable textures. black_2d_texture_id_ = ids[0]; black_cube_texture_id_ = ids[1]; static int8 black[] = {0, 0, 0, 0}; glBindTexture(GL_TEXTURE_2D, black_2d_texture_id_); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 1, 1, 0, GL_RGBA, GL_UNSIGNED_BYTE, black); glBindTexture(GL_TEXTURE_2D, 0); glBindTexture(GL_TEXTURE_CUBE_MAP, black_cube_texture_id_); static GLenum faces[] = { GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Z, GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, }; for (size_t ii = 0; ii < arraysize(faces); ++ii) { glTexImage2D(faces[ii], 0, GL_RGBA, 1, 1, 0, GL_RGBA, GL_UNSIGNED_BYTE, black); } glBindTexture(GL_TEXTURE_CUBE_MAP, 0); CHECK_GL_ERROR(); } } } } return success; } // TODO(kbr): the use of this anonymous namespace core dumps the // linker on Mac OS X 10.6 when the symbol ordering file is used // namespace { #if defined(UNIT_TEST) #elif defined(OS_WIN) const PIXELFORMATDESCRIPTOR kPixelFormatDescriptor = { sizeof(kPixelFormatDescriptor), // Size of structure. 1, // Default version. PFD_DRAW_TO_WINDOW | // Window drawing support. PFD_SUPPORT_OPENGL | // OpenGL support. PFD_DOUBLEBUFFER, // Double buffering support (not stereo). PFD_TYPE_RGBA, // RGBA color mode (not indexed). 24, // 24 bit color mode. 0, 0, 0, 0, 0, 0, // Don't set RGB bits & shifts. 8, 0, // 8 bit alpha 0, // No accumulation buffer. 0, 0, 0, 0, // Ignore accumulation bits. 24, // 24 bit z-buffer size. 8, // 8-bit stencil buffer. 0, // No aux buffer. PFD_MAIN_PLANE, // Main drawing plane (not overlay). 0, // Reserved. 0, 0, 0, // Layer masks ignored. }; LRESULT CALLBACK IntermediateWindowProc(HWND window, UINT message, WPARAM w_param, LPARAM l_param) { return ::DefWindowProc(window, message, w_param, l_param); } // Helper routine that returns the highest quality pixel format supported on // the current platform. Returns true upon success. bool GetWindowsPixelFormat(HWND window, bool anti_aliased, int* pixel_format) { // We must initialize a GL context before we can determine the multi-sampling // supported on the current hardware, so we create an intermediate window // and context here. HINSTANCE module_handle; if (!::GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_UNCHANGED_REFCOUNT | GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS, reinterpret_cast(IntermediateWindowProc), &module_handle)) { return false; } WNDCLASS intermediate_class; intermediate_class.style = CS_HREDRAW | CS_VREDRAW | CS_OWNDC; intermediate_class.lpfnWndProc = IntermediateWindowProc; intermediate_class.cbClsExtra = 0; intermediate_class.cbWndExtra = 0; intermediate_class.hInstance = module_handle; intermediate_class.hIcon = LoadIcon(NULL, IDI_APPLICATION); intermediate_class.hCursor = LoadCursor(NULL, IDC_ARROW); intermediate_class.hbrBackground = NULL; intermediate_class.lpszMenuName = NULL; intermediate_class.lpszClassName = L"Intermediate GL Window"; ATOM class_registration = ::RegisterClass(&intermediate_class); if (!class_registration) { return false; } HWND intermediate_window = ::CreateWindow( reinterpret_cast(class_registration), L"", WS_OVERLAPPEDWINDOW, 0, 0, CW_USEDEFAULT, CW_USEDEFAULT, NULL, NULL, NULL, NULL); if (!intermediate_window) { ::UnregisterClass(reinterpret_cast(class_registration), module_handle); return false; } HDC intermediate_dc = ::GetDC(intermediate_window); int format_index = ::ChoosePixelFormat(intermediate_dc, &kPixelFormatDescriptor); if (format_index == 0) { DLOG(ERROR) << "Unable to get the pixel format for GL context."; ::ReleaseDC(intermediate_window, intermediate_dc); ::DestroyWindow(intermediate_window); ::UnregisterClass(reinterpret_cast(class_registration), module_handle); return false; } if (!::SetPixelFormat(intermediate_dc, format_index, &kPixelFormatDescriptor)) { DLOG(ERROR) << "Unable to set the pixel format for GL context."; ::ReleaseDC(intermediate_window, intermediate_dc); ::DestroyWindow(intermediate_window); ::UnregisterClass(reinterpret_cast(class_registration), module_handle); return false; } // Store the pixel format without multisampling. *pixel_format = format_index; HGLRC gl_context = ::wglCreateContext(intermediate_dc); if (::wglMakeCurrent(intermediate_dc, gl_context)) { // GL context was successfully created and applied to the window's DC. // Startup GLEW, the GL extensions wrangler. GLenum glew_error = ::glewInit(); if (glew_error == GLEW_OK) { DLOG(INFO) << "Initialized GLEW " << ::glewGetString(GLEW_VERSION); } else { DLOG(ERROR) << "Unable to initialise GLEW : " << ::glewGetErrorString(glew_error); ::wglMakeCurrent(intermediate_dc, NULL); ::wglDeleteContext(gl_context); ::ReleaseDC(intermediate_window, intermediate_dc); ::DestroyWindow(intermediate_window); ::UnregisterClass(reinterpret_cast(class_registration), module_handle); return false; } // If the multi-sample extensions are present, query the api to determine // the pixel format. if (anti_aliased && WGLEW_ARB_pixel_format && WGLEW_ARB_multisample) { int pixel_attributes[] = { WGL_SAMPLES_ARB, 4, WGL_DRAW_TO_WINDOW_ARB, GL_TRUE, WGL_SUPPORT_OPENGL_ARB, GL_TRUE, WGL_ACCELERATION_ARB, WGL_FULL_ACCELERATION_ARB, WGL_COLOR_BITS_ARB, 24, WGL_ALPHA_BITS_ARB, 8, WGL_DEPTH_BITS_ARB, 24, WGL_STENCIL_BITS_ARB, 8, WGL_DOUBLE_BUFFER_ARB, GL_TRUE, WGL_SAMPLE_BUFFERS_ARB, GL_TRUE, 0, 0}; float pixel_attributes_f[] = {0, 0}; int msaa_pixel_format; unsigned int num_formats; // Query for the highest sampling rate supported, starting at 4x. static const int kSampleCount[] = {4, 2}; static const int kNumSamples = 2; for (int sample = 0; sample < kNumSamples; ++sample) { pixel_attributes[1] = kSampleCount[sample]; if (GL_TRUE == ::wglChoosePixelFormatARB(intermediate_dc, pixel_attributes, pixel_attributes_f, 1, &msaa_pixel_format, &num_formats)) { *pixel_format = msaa_pixel_format; break; } } } } ::wglMakeCurrent(intermediate_dc, NULL); ::wglDeleteContext(gl_context); ::ReleaseDC(intermediate_window, intermediate_dc); ::DestroyWindow(intermediate_window); ::UnregisterClass(reinterpret_cast(class_registration), module_handle); return true; } #endif // OS_WIN // These commands convert from c calls to local os calls. void GLGenBuffersHelper( GLES2DecoderImpl* decoder, GLsizei n, GLuint* ids) { glGenBuffersARB(n, ids); // TODO(gman): handle error for (GLsizei ii = 0; ii < n; ++ii) { decoder->CreateBufferInfo(ids[ii]); } } void GLGenFramebuffersHelper( GLES2DecoderImpl*, GLsizei n, GLuint* ids) { glGenFramebuffersEXT(n, ids); } void GLGenRenderbuffersHelper( GLES2DecoderImpl*, GLsizei n, GLuint* ids) { glGenRenderbuffersEXT(n, ids); } void GLGenTexturesHelper( GLES2DecoderImpl* decoder, GLsizei n, GLuint* ids) { glGenTextures(n, ids); // TODO(gman): handle error for (GLsizei ii = 0; ii < n; ++ii) { decoder->CreateTextureInfo(ids[ii]); } } void GLDeleteBuffersHelper( GLES2DecoderImpl* decoder, GLsizei n, GLuint* ids) { glDeleteBuffersARB(n, ids); // TODO(gman): handle error for (GLsizei ii = 0; ii < n; ++ii) { decoder->RemoveBufferInfo(ids[ii]); } } void GLDeleteFramebuffersHelper( GLES2DecoderImpl*, GLsizei n, GLuint* ids) { glDeleteFramebuffersEXT(n, ids); } void GLDeleteRenderbuffersHelper( GLES2DecoderImpl*, GLsizei n, GLuint* ids) { glDeleteRenderbuffersEXT(n, ids); } void GLDeleteTexturesHelper( GLES2DecoderImpl* decoder, GLsizei n, GLuint* ids) { glDeleteTextures(n, ids); // TODO(gman): handle error for (GLsizei ii = 0; ii < n; ++ii) { decoder->RemoveTextureInfo(ids[ii]); } } // } // anonymous namespace bool GLES2DecoderImpl::MakeCurrent() { #if defined(UNIT_TEST) return true; #elif defined(OS_WIN) if (::wglGetCurrentDC() == device_context_ && ::wglGetCurrentContext() == gl_context_) { return true; } if (!::wglMakeCurrent(device_context_, gl_context_)) { DLOG(ERROR) << "Unable to make gl context current."; return false; } return true; #elif defined(OS_LINUX) return window()->MakeCurrent(); #elif defined(OS_MACOSX) if (CGLGetCurrentContext() != gl_context_) { if (CGLSetCurrentContext(gl_context_) != kCGLNoError) { DLOG(ERROR) << "Unable to make gl context current."; return false; } } return true; #else NOTREACHED(); return false; #endif } uint32 GLES2DecoderImpl::GetServiceIdForTesting(uint32 client_id) { #if defined(UNIT_TEST) GLuint service_id; bool result = id_manager()->GetServiceId(client_id, &service_id); return result ? service_id : 0u; #else DCHECK(false); return 0u; #endif } bool GLES2DecoderImpl::ValidateIdsAreUnused( GLsizei n, const GLuint* client_ids) { for (GLsizei ii = 0; ii < n; ++ii) { GLuint service_id; if (id_manager()->GetServiceId(client_ids[ii], &service_id)) { return false; } } return true; } bool GLES2DecoderImpl::RegisterObjects( GLsizei n, const GLuint* client_ids, const GLuint* service_ids) { for (GLsizei ii = 0; ii < n; ++ii) { if (!id_manager()->AddMapping(client_ids[ii], service_ids[ii])) { NOTREACHED(); return false; } } return true; } void GLES2DecoderImpl::UnregisterObjects( GLsizei n, const GLuint* client_ids, GLuint* service_ids) { for (GLsizei ii = 0; ii < n; ++ii) { if (id_manager()->GetServiceId(client_ids[ii], &service_ids[ii])) { id_manager()->RemoveMapping(client_ids[ii], service_ids[ii]); } else { service_ids[ii] = 0; } } } bool GLES2DecoderImpl::InitPlatformSpecific() { #if defined(UNIT_TEST) #elif defined(OS_WIN) device_context_ = ::GetDC(hwnd()); int pixel_format; if (!GetWindowsPixelFormat(hwnd(), anti_aliased_, &pixel_format)) { DLOG(ERROR) << "Unable to determine optimal pixel format for GL context."; return false; } if (!::SetPixelFormat(device_context_, pixel_format, &kPixelFormatDescriptor)) { DLOG(ERROR) << "Unable to set the pixel format for GL context."; return false; } gl_context_ = ::wglCreateContext(device_context_); if (!gl_context_) { DLOG(ERROR) << "Failed to create GL context."; return false; } #elif defined(OS_LINUX) DCHECK(window()); if (!window()->Initialize()) return false; #elif defined(OS_MACOSX) // Create a 1x1 pbuffer and associated context to bootstrap things static const CGLPixelFormatAttribute attribs[] = { (CGLPixelFormatAttribute) kCGLPFAPBuffer, (CGLPixelFormatAttribute) 0 }; CGLPixelFormatObj pixelFormat; GLint numPixelFormats; if (CGLChoosePixelFormat(attribs, &pixelFormat, &numPixelFormats) != kCGLNoError) { DLOG(ERROR) << "Error choosing pixel format."; return false; } if (!pixelFormat) { return false; } CGLContextObj context; CGLError res = CGLCreateContext(pixelFormat, 0, &context); CGLDestroyPixelFormat(pixelFormat); if (res != kCGLNoError) { DLOG(ERROR) << "Error creating context."; return false; } CGLPBufferObj pbuffer; if (CGLCreatePBuffer(1, 1, GL_TEXTURE_2D, GL_RGBA, 0, &pbuffer) != kCGLNoError) { CGLDestroyContext(context); DLOG(ERROR) << "Error creating pbuffer."; return false; } if (CGLSetPBuffer(context, pbuffer, 0, 0, 0) != kCGLNoError) { CGLDestroyContext(context); CGLDestroyPBuffer(pbuffer); DLOG(ERROR) << "Error attaching pbuffer to context."; return false; } gl_context_ = context; pbuffer_ = pbuffer; // Now we're ready to handle SetWindowSize calls, which will // allocate and/or reallocate the IOSurface and associated offscreen // OpenGL structures for rendering. #endif return true; } bool GLES2DecoderImpl::InitGlew() { #if !defined(UNIT_TEST) DLOG(INFO) << "Initializing GL and GLEW for GLES2Decoder."; GLenum glew_error = glewInit(); if (glew_error != GLEW_OK) { DLOG(ERROR) << "Unable to initialise GLEW : " << ::glewGetErrorString(glew_error); return false; } // Check to see that we can use the OpenGL vertex attribute APIs // TODO(petersont): Return false if this check fails, but because some // Intel hardware does not support OpenGL 2.0, yet does support all of the // extensions we require, we only log an error. A future CL should change // this check to ensure that all of the extension strings we require are // present. if (!GLEW_VERSION_2_0) { DLOG(ERROR) << "GL drivers do not have OpenGL 2.0 functionality."; } bool extensions_found = true; if (!GLEW_ARB_vertex_buffer_object) { // NOTE: Linux NVidia drivers claim to support OpenGL 2.0 when using // indirect rendering (e.g. remote X), but it is actually lying. The // ARB_vertex_buffer_object functions silently no-op (!) when using // indirect rendering, leading to crashes. Fortunately, in that case, the // driver claims to not support ARB_vertex_buffer_object, so fail in that // case. DLOG(ERROR) << "GL drivers do not support vertex buffer objects."; extensions_found = false; } if (!GLEW_EXT_framebuffer_object) { DLOG(ERROR) << "GL drivers do not support framebuffer objects."; extensions_found = false; } // Check for necessary extensions if (!GLEW_VERSION_2_0 && !GLEW_EXT_stencil_two_side) { DLOG(ERROR) << "Two sided stencil extension missing."; extensions_found = false; } if (!GLEW_VERSION_1_4 && !GLEW_EXT_blend_func_separate) { DLOG(ERROR) <<"Separate blend func extension missing."; extensions_found = false; } if (!GLEW_VERSION_2_0 && !GLEW_EXT_blend_equation_separate) { DLOG(ERROR) << "Separate blend function extension missing."; extensions_found = false; } if (!extensions_found) return false; #endif return true; } #if defined(OS_MACOSX) #if !defined(UNIT_TEST) static void AddBooleanValue(CFMutableDictionaryRef dictionary, const CFStringRef key, bool value) { CFDictionaryAddValue(dictionary, key, (value ? kCFBooleanTrue : kCFBooleanFalse)); } static void AddIntegerValue(CFMutableDictionaryRef dictionary, const CFStringRef key, int32 value) { CFNumberRef number = CFNumberCreate(NULL, kCFNumberSInt32Type, &value); CFDictionaryAddValue(dictionary, key, number); } #endif // !defined(UNIT_TEST) void GLES2DecoderImpl::AllocateRenderBuffers(GLenum target, int32 width, int32 height) { if (!texture_) { // Generate the texture object. glGenTextures(1, &texture_); glBindTexture(target, texture_); glTexParameteri(target, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(target, GL_TEXTURE_MAG_FILTER, GL_NEAREST); // Generate and bind the framebuffer object. glGenFramebuffersEXT(1, &fbo_); glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fbo_); bound_fbo_ = fbo_; // Generate (but don't bind) the depth buffer -- we don't need // this bound in order to do offscreen rendering. glGenRenderbuffersEXT(1, &depth_stencil_renderbuffer_); } // Reallocate the depth buffer. glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, depth_stencil_renderbuffer_); glRenderbufferStorageEXT(GL_RENDERBUFFER_EXT, GL_DEPTH24_STENCIL8_EXT, width, height); // Unbind the renderbuffers. glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, bound_renderbuffer_); // Make sure that subsequent set-up code affects the render texture. glBindTexture(target, texture_); } bool GLES2DecoderImpl::SetupFrameBufferObject(GLenum target) { if (bound_fbo_ != fbo_) { glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fbo_); } GLenum fbo_status; glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, target, texture_, 0); fbo_status = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT); if (fbo_status == GL_FRAMEBUFFER_COMPLETE_EXT) { glFramebufferRenderbufferEXT(GL_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT_EXT, GL_RENDERBUFFER_EXT, depth_stencil_renderbuffer_); fbo_status = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT); } // Attach the depth and stencil buffer. if (fbo_status == GL_FRAMEBUFFER_COMPLETE_EXT) { glFramebufferRenderbufferEXT(GL_FRAMEBUFFER_EXT, GL_STENCIL_ATTACHMENT, GL_RENDERBUFFER_EXT, depth_stencil_renderbuffer_); fbo_status = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT); } if (bound_fbo_ != fbo_) { glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, bound_fbo_); } return fbo_status == GL_FRAMEBUFFER_COMPLETE_EXT; } uint64 GLES2DecoderImpl::SetWindowSizeForIOSurface(int32 width, int32 height) { #if defined(UNIT_TEST) return 0; #else if (surface_width_ == width && surface_height_ == height) { // Return 0 to indicate to the caller that no new backing store // allocation occurred. return 0; } IOSurfaceSupport* io_surface_support = IOSurfaceSupport::Initialize(); if (!io_surface_support) return 0; // Caller can try using SetWindowSizeForTransportDIB(). if (!MakeCurrent()) return 0; // GL_TEXTURE_RECTANGLE_ARB is the best supported render target on // Mac OS X and is required for IOSurface interoperability. GLenum target = GL_TEXTURE_RECTANGLE_ARB; AllocateRenderBuffers(target, width, height); // Allocate a new IOSurface, which is the GPU resource that can be // shared across processes. scoped_cftyperef properties; properties.reset(CFDictionaryCreateMutable(kCFAllocatorDefault, 0, &kCFTypeDictionaryKeyCallBacks, &kCFTypeDictionaryValueCallBacks)); AddIntegerValue(properties, io_surface_support->GetKIOSurfaceWidth(), width); AddIntegerValue(properties, io_surface_support->GetKIOSurfaceHeight(), height); AddIntegerValue(properties, io_surface_support->GetKIOSurfaceBytesPerElement(), 4); AddBooleanValue(properties, io_surface_support->GetKIOSurfaceIsGlobal(), true); // I believe we should be able to unreference the IOSurfaces without // synchronizing with the browser process because they are // ultimately reference counted by the operating system. io_surface_.reset(io_surface_support->IOSurfaceCreate(properties)); // Don't think we need to identify a plane. GLuint plane = 0; io_surface_support->CGLTexImageIOSurface2D(gl_context_, target, GL_RGBA, width, height, GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV, io_surface_.get(), plane); // Set up the frame buffer object. SetupFrameBufferObject(target); surface_width_ = width; surface_height_ = height; // Now send back an identifier for the IOSurface. We originally // intended to send back a mach port from IOSurfaceCreateMachPort // but it looks like Chrome IPC would need to be modified to // properly send mach ports between processes. For the time being we // make our IOSurfaces global and send back their identifiers. On // the browser process side the identifier is reconstituted into an // IOSurface for on-screen rendering. return io_surface_support->IOSurfaceGetID(io_surface_); #endif // !defined(UNIT_TEST) } TransportDIB::Handle GLES2DecoderImpl::SetWindowSizeForTransportDIB( int32 width, int32 height) { #if defined(UNIT_TEST) return TransportDIB::DefaultHandleValue(); #else if (surface_width_ == width && surface_height_ == height) { // Return an invalid handle to indicate to the caller that no new backing // store allocation occurred. return TransportDIB::DefaultHandleValue(); } surface_width_ = width; surface_height_ = height; // Release the old TransportDIB in the browser. if (dib_free_callback_.get() && transport_dib_.get()) { dib_free_callback_->Run(transport_dib_->id()); } transport_dib_.reset(); // Ask the renderer to create a TransportDIB. size_t dib_size = width * 4 * height; // 4 bytes per pixel. TransportDIB::Handle dib_handle; if (dib_alloc_callback_.get()) { dib_alloc_callback_->Run(dib_size, &dib_handle); } if (!TransportDIB::is_valid(dib_handle)) { // If the allocator fails, it means the DIB was not created in the browser, // so there is no need to run the deallocator here. return TransportDIB::DefaultHandleValue(); } transport_dib_.reset(TransportDIB::Map(dib_handle)); if (transport_dib_.get() == NULL) { // TODO(dspringer): if the Map() fails, should the deallocator be run so // that the DIB is deallocated in the browser? return TransportDIB::DefaultHandleValue(); } // Set up the render buffers and reserve enough space on the card for the // framebuffer texture. GLenum target = GL_TEXTURE_RECTANGLE_ARB; AllocateRenderBuffers(target, width, height); glTexImage2D(target, 0, // mipmap level 0 GL_RGBA8, // internal pixel format width, height, 0, // 0 border GL_BGRA, // Used for consistency GL_UNSIGNED_INT_8_8_8_8_REV, NULL); // No data, just reserve room on the card. SetupFrameBufferObject(target); return transport_dib_->handle(); #endif // !defined(UNIT_TEST) } void GLES2DecoderImpl::SetTransportDIBAllocAndFree( Callback2::Type* allocator, Callback1::Type* deallocator) { dib_alloc_callback_.reset(allocator); dib_free_callback_.reset(deallocator); } #endif // defined(OS_MACOSX) void GLES2DecoderImpl::SetSwapBuffersCallback(Callback0::Type* callback) { swap_buffers_callback_.reset(callback); } void GLES2DecoderImpl::Destroy() { #if defined(UNIT_TEST) #elif defined(OS_LINUX) DCHECK(window()); window()->Destroy(); #elif defined(OS_MACOSX) // Release the old TransportDIB in the browser. if (dib_free_callback_.get() && transport_dib_.get()) { dib_free_callback_->Run(transport_dib_->id()); } transport_dib_.reset(); if (gl_context_) CGLDestroyContext(gl_context_); if (pbuffer_) CGLDestroyPBuffer(pbuffer_); #endif } const char* GLES2DecoderImpl::GetCommandName(unsigned int command_id) const { if (command_id > kStartPoint && command_id < kNumCommands) { return gles2::GetCommandName(static_cast(command_id)); } return GetCommonCommandName(static_cast(command_id)); } // Decode command with its arguments, and call the corresponding GL function. // Note: args is a pointer to the command buffer. As such, it could be changed // by a (malicious) client at any time, so if validation has to happen, it // should operate on a copy of them. error::Error GLES2DecoderImpl::DoCommand( unsigned int command, unsigned int arg_count, const void* cmd_data) { error::Error result = error::kNoError; if (debug()) { // TODO(gman): Change output to something useful for NaCl. printf("cmd: %s\n", GetCommandName(command)); } unsigned int command_index = command - kStartPoint - 1; if (command_index < arraysize(g_command_info)) { const CommandInfo& info = g_command_info[command_index]; unsigned int info_arg_count = static_cast(info.arg_count); if ((info.arg_flags == cmd::kFixed && arg_count == info_arg_count) || (info.arg_flags == cmd::kAtLeastN && arg_count >= info_arg_count)) { uint32 immediate_data_size = (arg_count - info_arg_count) * sizeof(CommandBufferEntry); // NOLINT switch (command) { #define GLES2_CMD_OP(name) \ case name::kCmdId: \ result = Handle ## name( \ immediate_data_size, \ *static_cast(cmd_data)); \ break; \ GLES2_COMMAND_LIST(GLES2_CMD_OP) #undef GLES2_CMD_OP } if (debug()) { GLenum error; while ((error = glGetError()) != GL_NO_ERROR) { // TODO(gman): Change output to something useful for NaCl. SetGLError(error); printf("GL ERROR b4: %s\n", GetCommandName(command)); } } } else { result = error::kInvalidArguments; } } else { result = DoCommonCommand(command, arg_count, cmd_data); } return result; } void GLES2DecoderImpl::RemoveBufferInfo(GLuint buffer_id) { buffer_manager()->RemoveBufferInfo(buffer_id); // TODO(gman): See if we can remove the rest of this function as // buffers are now reference counted and have a "IsDeleted" function. if (bound_array_buffer_ && bound_array_buffer_->buffer_id() == buffer_id) { bound_array_buffer_ = NULL; } if (bound_element_array_buffer_ && bound_element_array_buffer_->buffer_id() == buffer_id) { bound_element_array_buffer_ = NULL; } // go through VertexAttribInfo and update any info that references the buffer. for (GLuint ii = 0; ii < group_->max_vertex_attribs(); ++ii) { VertexAttribInfo& info = vertex_attrib_infos_[ii]; if (info.buffer() && info.buffer()->buffer_id() == buffer_id) { info.ClearBuffer(); } } } void GLES2DecoderImpl::CreateProgramHelper(GLuint client_id) { // TODO(gman): verify client_id is unused. GLuint service_id = glCreateProgram(); if (service_id) { id_manager()->AddMapping(client_id, service_id); CreateProgramInfo(service_id); } } void GLES2DecoderImpl::CreateShaderHelper(GLenum type, GLuint client_id) { // TODO(gman): verify client_id is unused. GLuint service_id = glCreateShader(type); if (service_id) { id_manager()->AddMapping(client_id, service_id); CreateShaderInfo(service_id); } } void GLES2DecoderImpl::DoActiveTexture(GLenum texture_unit) { if (texture_unit > group_->max_texture_units()) { SetGLError(GL_INVALID_ENUM); return; } active_texture_unit_ = texture_unit - GL_TEXTURE0; } void GLES2DecoderImpl::DoBindBuffer(GLenum target, GLuint buffer) { BufferManager::BufferInfo* info = NULL; if (buffer) { info = GetBufferInfo(buffer); if (!info) { SetGLError(GL_INVALID_OPERATION); return; } } switch (target) { case GL_ARRAY_BUFFER: bound_array_buffer_ = info; break; case GL_ELEMENT_ARRAY_BUFFER: bound_element_array_buffer_ = info; break; default: NOTREACHED(); // Validation should prevent us getting here. break; } glBindBuffer(target, buffer); } void GLES2DecoderImpl::DoBindTexture(GLenum target, GLuint texture) { TextureManager::TextureInfo* info = NULL; if (texture) { info = GetTextureInfo(texture); // Check the texture exists // Check that we are not trying to bind it to a different target. if (!info || (info->target() != 0 && info->target() != target)) { SetGLError(GL_INVALID_OPERATION); return; } if (info->target() == 0) { texture_manager()->SetInfoTarget(info, target); } } glBindTexture(target, texture); TextureUnit& unit = texture_units_[active_texture_unit_]; unit.bind_target = target; switch (target) { case GL_TEXTURE_2D: unit.bound_texture_2d = info; break; case GL_TEXTURE_CUBE_MAP: unit.bound_texture_cube_map = info; break; default: NOTREACHED(); // Validation should prevent us getting here. break; } } void GLES2DecoderImpl::DoDisableVertexAttribArray(GLuint index) { if (index < group_->max_vertex_attribs()) { vertex_attrib_infos_[index].set_enabled(false); glDisableVertexAttribArray(index); } else { SetGLError(GL_INVALID_VALUE); } } void GLES2DecoderImpl::DoEnableVertexAttribArray(GLuint index) { if (index < group_->max_vertex_attribs()) { vertex_attrib_infos_[index].set_enabled(true); glEnableVertexAttribArray(index); } else { SetGLError(GL_INVALID_VALUE); } } void GLES2DecoderImpl::DoGenerateMipmap(GLenum target) { TextureManager::TextureInfo* info = GetTextureInfoForTarget(target); if (!info || !info->MarkMipmapsGenerated()) { SetGLError(GL_INVALID_OPERATION); return; } glGenerateMipmapEXT(target); } error::Error GLES2DecoderImpl::HandleDeleteShader( uint32 immediate_data_size, const gles2::DeleteShader& c) { GLuint shader = c.shader; GLuint service_id; if (!id_manager()->GetServiceId(shader, &service_id)) { SetGLError(GL_INVALID_VALUE); return error::kNoError; } RemoveShaderInfo(service_id); glDeleteShader(service_id); id_manager()->RemoveMapping(shader, service_id); return error::kNoError; } error::Error GLES2DecoderImpl::HandleDeleteProgram( uint32 immediate_data_size, const gles2::DeleteProgram& c) { GLuint program = c.program; GLuint service_id; if (!id_manager()->GetServiceId(program, &service_id)) { SetGLError(GL_INVALID_VALUE); return error::kNoError; } RemoveProgramInfo(service_id); glDeleteProgram(service_id); id_manager()->RemoveMapping(program, service_id); return error::kNoError; } void GLES2DecoderImpl::DoDrawArrays( GLenum mode, GLint first, GLsizei count) { if (IsDrawValid(first + count - 1)) { bool has_non_renderable_textures; SetBlackTextureForNonRenderableTextures(&has_non_renderable_textures); glDrawArrays(mode, first, count); if (has_non_renderable_textures) { RestoreStateForNonRenderableTextures(); } } } void GLES2DecoderImpl::DoLinkProgram(GLuint program) { ProgramManager::ProgramInfo* info = GetProgramInfo(program); if (!info) { SetGLError(GL_INVALID_OPERATION); return; } CopyRealGLErrorsToWrapper(); glLinkProgram(program); GLenum error = glGetError(); if (error != GL_NO_ERROR) { RemoveProgramInfo(program); SetGLError(error); } else { info->Update(); } }; void GLES2DecoderImpl::DoSwapBuffers() { #if defined(UNIT_TEST) #elif defined(OS_WIN) ::SwapBuffers(device_context_); #elif defined(OS_LINUX) DCHECK(window()); window()->SwapBuffers(); #elif defined(OS_MACOSX) if (bound_fbo_ != fbo_) { glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fbo_); } if (io_surface_.get() != NULL) { // Bind and unbind the framebuffer to make changes to the // IOSurface show up in the other process. glFlush(); glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0); glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fbo_); } else if (transport_dib_.get() != NULL) { // Pre-Mac OS X 10.6, fetch the rendered image from the FBO and copy it // into the TransportDIB. // TODO(dspringer): There are a couple of options that can speed this up. // First is to use async reads into a PBO, second is to use SPI that // allows many tasks to access the same CGSSurface. void* pixel_memory = transport_dib_->memory(); if (pixel_memory) { // Note that glReadPixels does an implicit glFlush(). glReadBuffer(GL_COLOR_ATTACHMENT0_EXT); glReadPixels(0, 0, surface_width_, surface_height_, GL_BGRA, // This pixel format should have no conversion. GL_UNSIGNED_INT_8_8_8_8_REV, pixel_memory); } } if (bound_fbo_ != fbo_) { glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, bound_fbo_); } #endif if (swap_buffers_callback_.get()) { swap_buffers_callback_->Run(); } } void GLES2DecoderImpl::DoTexParameterf( GLenum target, GLenum pname, GLfloat param) { TextureManager::TextureInfo* info = GetTextureInfoForTarget(target); if (!info) { SetGLError(GL_INVALID_VALUE); } else { info->SetParameter(pname, static_cast(param)); glTexParameterf(target, pname, param); } } void GLES2DecoderImpl::DoTexParameteri( GLenum target, GLenum pname, GLint param) { TextureManager::TextureInfo* info = GetTextureInfoForTarget(target); if (!info) { SetGLError(GL_INVALID_VALUE); } else { info->SetParameter(pname, param); glTexParameteri(target, pname, param); } } void GLES2DecoderImpl::DoTexParameterfv( GLenum target, GLenum pname, const GLfloat* params) { TextureManager::TextureInfo* info = GetTextureInfoForTarget(target); if (!info) { SetGLError(GL_INVALID_VALUE); } else { info->SetParameter(pname, *reinterpret_cast(params)); glTexParameterfv(target, pname, params); } } void GLES2DecoderImpl::DoTexParameteriv( GLenum target, GLenum pname, const GLint* params) { TextureManager::TextureInfo* info = GetTextureInfoForTarget(target); if (!info) { SetGLError(GL_INVALID_VALUE); } else { info->SetParameter(pname, *params); glTexParameteriv(target, pname, params); } } void GLES2DecoderImpl::DoUniform1i(GLint location, GLint v0) { if (!current_program_ || current_program_->IsDeleted()) { // The program does not exist. SetGLError(GL_INVALID_OPERATION); return; } current_program_->SetSamplers(location, 1, &v0); glUniform1i(location, v0); } void GLES2DecoderImpl::DoUniform1iv( GLint location, GLsizei count, const GLint *value) { if (!current_program_ || current_program_->IsDeleted()) { // The program does not exist. SetGLError(GL_INVALID_OPERATION); return; } current_program_->SetSamplers(location, count, value); glUniform1iv(location, count, value); } void GLES2DecoderImpl::DoUseProgram(GLuint program) { ProgramManager::ProgramInfo* info = NULL; if (program) { info = GetProgramInfo(program); if (!info) { // Program was not linked successfully. (ie, glLinkProgram) SetGLError(GL_INVALID_OPERATION); return; } } current_program_ = info; glUseProgram(program); } GLenum GLES2DecoderImpl::GetGLError() { // Check the GL error first, then our wrapped error. GLenum error = glGetError(); if (error == GL_NO_ERROR && error_bits_ != 0) { for (uint32 mask = 1; mask != 0; mask = mask << 1) { if ((error_bits_ & mask) != 0) { error = GLES2Util::GLErrorBitToGLError(mask); break; } } } if (error != GL_NO_ERROR) { // There was an error, clear the corresponding wrapped error. error_bits_ &= ~GLES2Util::GLErrorToErrorBit(error); } return error; } void GLES2DecoderImpl::SetGLError(GLenum error) { error_bits_ |= GLES2Util::GLErrorToErrorBit(error); } void GLES2DecoderImpl::CopyRealGLErrorsToWrapper() { GLenum error; while ((error = glGetError()) != GL_NO_ERROR) { SetGLError(error); } } bool GLES2DecoderImpl::VertexAttribInfo::CanAccess(GLuint index) { if (!enabled_) { return true; } if (!buffer_ || buffer_->IsDeleted()) { return false; } // The number of elements that can be accessed. GLsizeiptr buffer_size = buffer_->size(); if (offset_ > buffer_size || real_stride_ == 0) { return false; } uint32 usable_size = buffer_size - offset_; GLuint num_elements = usable_size / real_stride_ + ((usable_size % real_stride_) >= (GLES2Util::GetGLTypeSizeForTexturesAndBuffers(type_) * size_) ? 1 : 0); return index < num_elements; } void GLES2DecoderImpl::SetBlackTextureForNonRenderableTextures( bool* has_non_renderable_textures) { DCHECK(has_non_renderable_textures); DCHECK(current_program_); DCHECK(!current_program_->IsDeleted()); *has_non_renderable_textures = false; const ProgramManager::ProgramInfo::SamplerIndices& sampler_indices = current_program_->sampler_indices(); for (size_t ii = 0; ii < sampler_indices.size(); ++ii) { const ProgramManager::ProgramInfo::UniformInfo* uniform_info = current_program_->GetUniformInfo(sampler_indices[ii]); DCHECK(uniform_info); for (size_t jj = 0; jj < uniform_info->texture_units.size(); ++jj) { GLuint texture_unit_index = uniform_info->texture_units[jj]; if (texture_unit_index < group_->max_texture_units()) { TextureUnit& texture_unit = texture_units_[texture_unit_index]; TextureManager::TextureInfo* texture_info = uniform_info->type == GL_SAMPLER_2D ? texture_unit.bound_texture_2d : texture_unit.bound_texture_cube_map; if (!texture_info || !texture_info->CanRender()) { *has_non_renderable_textures = true; glActiveTexture(GL_TEXTURE0 + texture_unit_index); glBindTexture( uniform_info->type == GL_SAMPLER_2D ? GL_TEXTURE_2D : GL_TEXTURE_CUBE_MAP, uniform_info->type == GL_SAMPLER_2D ? black_2d_texture_id_ : black_cube_texture_id_); } } // else: should this be an error? } } } void GLES2DecoderImpl::RestoreStateForNonRenderableTextures() { DCHECK(current_program_); DCHECK(!current_program_->IsDeleted()); const ProgramManager::ProgramInfo::SamplerIndices& sampler_indices = current_program_->sampler_indices(); for (size_t ii = 0; ii < sampler_indices.size(); ++ii) { const ProgramManager::ProgramInfo::UniformInfo* uniform_info = current_program_->GetUniformInfo(sampler_indices[ii]); DCHECK(uniform_info); for (size_t jj = 0; jj < uniform_info->texture_units.size(); ++jj) { GLuint texture_unit_index = uniform_info->texture_units[jj]; if (texture_unit_index < group_->max_texture_units()) { TextureUnit& texture_unit = texture_units_[texture_unit_index]; TextureManager::TextureInfo* texture_info = uniform_info->type == GL_SAMPLER_2D ? texture_unit.bound_texture_2d : texture_unit.bound_texture_cube_map; if (!texture_info || !texture_info->CanRender()) { glActiveTexture(GL_TEXTURE0 + texture_unit_index); // Get the texture info that was previously bound here. texture_info = texture_unit.bind_target == GL_TEXTURE_2D ? texture_unit.bound_texture_2d : texture_unit.bound_texture_cube_map; glBindTexture(texture_unit.bind_target, texture_info ? texture_info->texture_id() : 0); } } } } // Set the active texture back to whatever the user had it as. glActiveTexture(GL_TEXTURE0 + active_texture_unit_); } bool GLES2DecoderImpl::IsDrawValid(GLuint max_vertex_accessed) { if (!current_program_ || current_program_->IsDeleted()) { // The program does not exist. // But GL says no ERROR. return false; } // Validate that all attribs current program needs are setup correctly. const ProgramManager::ProgramInfo::AttribInfoVector& infos = current_program_->GetAttribInfos(); for (size_t ii = 0; ii < infos.size(); ++ii) { GLint location = infos[ii].location; if (location < 0) { return false; } DCHECK_LT(static_cast(location), group_->max_vertex_attribs()); if (!vertex_attrib_infos_[location].CanAccess(max_vertex_accessed)) { SetGLError(GL_INVALID_OPERATION); return false; } } return true; }; error::Error GLES2DecoderImpl::HandleDrawElements( uint32 immediate_data_size, const gles2::DrawElements& c) { if (!bound_element_array_buffer_ || bound_element_array_buffer_->IsDeleted()) { SetGLError(GL_INVALID_OPERATION); } else { GLenum mode = c.mode; GLsizei count = c.count; GLenum type = c.type; int32 offset = c.index_offset; if (count < 0) { SetGLError(GL_INVALID_VALUE); } else if (!ValidateGLenumDrawMode(mode) || !ValidateGLenumIndexType(type)) { SetGLError(GL_INVALID_ENUM); } else { GLsizeiptr buffer_size = bound_element_array_buffer_->size(); if (offset > buffer_size) { SetGLError(GL_INVALID_OPERATION); } else { GLsizei usable_size = buffer_size - offset; GLsizei num_elements = usable_size / GLES2Util::GetGLTypeSizeForTexturesAndBuffers(type); if (count > num_elements) { SetGLError(GL_INVALID_OPERATION); } else { const GLvoid* indices = reinterpret_cast(offset); GLuint max_vertex_accessed = bound_element_array_buffer_->GetMaxValueForRange( offset, count, type); if (IsDrawValid(max_vertex_accessed)) { bool has_non_renderable_textures; SetBlackTextureForNonRenderableTextures( &has_non_renderable_textures); glDrawElements(mode, count, type, indices); if (has_non_renderable_textures) { RestoreStateForNonRenderableTextures(); } } } } } } return error::kNoError; } // Calls glShaderSource for the various versions of the ShaderSource command. // Assumes that data / data_size points to a piece of memory that is in range // of whatever context it came from (shared memory, immediate memory, bucket // memory.) error::Error GLES2DecoderImpl::ShaderSourceHelper( GLuint shader, const char* data, uint32 data_size) { ShaderManager::ShaderInfo* info = GetShaderInfo(shader); if (!info) { SetGLError(GL_INVALID_OPERATION); return error::kNoError; } // Note: We don't actually call glShaderSource here. We wait until // the call to glCompileShader. info->Update(std::string(data, data + data_size)); return error::kNoError; } error::Error GLES2DecoderImpl::HandleShaderSource( uint32 immediate_data_size, const gles2::ShaderSource& c) { GLuint shader; if (!id_manager()->GetServiceId(c.shader, &shader)) { SetGLError(GL_INVALID_VALUE); return error::kNoError; } uint32 data_size = c.data_size; const char* data = GetSharedMemoryAs( c.data_shm_id, c.data_shm_offset, data_size); if (!data) { return error::kOutOfBounds; } return ShaderSourceHelper(shader, data, data_size); } error::Error GLES2DecoderImpl::HandleShaderSourceImmediate( uint32 immediate_data_size, const gles2::ShaderSourceImmediate& c) { GLuint shader; if (!id_manager()->GetServiceId(c.shader, &shader)) { SetGLError(GL_INVALID_VALUE); return error::kNoError; } uint32 data_size = c.data_size; const char* data = GetImmediateDataAs( c, data_size, immediate_data_size); if (!data) { return error::kOutOfBounds; } return ShaderSourceHelper(shader, data, data_size); } void GLES2DecoderImpl::DoCompileShader(GLuint shader) { ShaderManager::ShaderInfo* info = GetShaderInfo(shader); if (!info) { SetGLError(GL_INVALID_OPERATION); return; } // TODO(gman): Run shader through compiler that converts GL ES 2.0 shader // to DesktopGL shader and pass that to glShaderSource and then // glCompileShader. const char* ptr = info->source().c_str(); glShaderSource(shader, 1, &ptr, NULL); glCompileShader(shader); }; void GLES2DecoderImpl::DoGetShaderiv( GLuint shader, GLenum pname, GLint* params) { ShaderManager::ShaderInfo* info = GetShaderInfo(shader); if (!info) { SetGLError(GL_INVALID_OPERATION); return; } if (pname == GL_SHADER_SOURCE_LENGTH) { *params = info->source().size(); } else { glGetShaderiv(shader, pname, params); } } void GLES2DecoderImpl::DoGetShaderSource( GLuint shader, GLsizei bufsize, GLsizei* length, char* dst) { ShaderManager::ShaderInfo* info = GetShaderInfo(shader); if (!info) { SetGLError(GL_INVALID_OPERATION); return; } const std::string& source = info->source(); GLsizei size = std::min(bufsize - 1, static_cast(source.size())); if (length) { *length = size; } memcpy(dst, source.c_str(), size); dst[size] = '\0'; } error::Error GLES2DecoderImpl::HandleVertexAttribPointer( uint32 immediate_data_size, const gles2::VertexAttribPointer& c) { if (bound_array_buffer_ && !bound_array_buffer_->IsDeleted()) { GLuint indx = c.indx; GLint size = c.size; GLenum type = c.type; GLboolean normalized = c.normalized; GLsizei stride = c.stride; GLsizei offset = c.offset; const void* ptr = reinterpret_cast(offset); if (!ValidateGLenumVertexAttribType(type) || !ValidateGLintVertexAttribSize(size)) { SetGLError(GL_INVALID_ENUM); return error::kNoError; } if (indx >= group_->max_vertex_attribs() || stride < 0 || offset < 0) { SetGLError(GL_INVALID_VALUE); return error::kNoError; } GLsizei component_size = GLES2Util::GetGLTypeSizeForTexturesAndBuffers(type); GLsizei real_stride = stride != 0 ? stride : component_size * size; if (offset % component_size > 0) { SetGLError(GL_INVALID_VALUE); return error::kNoError; } vertex_attrib_infos_[indx].SetInfo( bound_array_buffer_, size, type, real_stride, offset); glVertexAttribPointer(indx, size, type, normalized, stride, ptr); } else { SetGLError(GL_INVALID_VALUE); } return error::kNoError; } error::Error GLES2DecoderImpl::HandleReadPixels( uint32 immediate_data_size, const gles2::ReadPixels& c) { GLint x = c.x; GLint y = c.y; GLsizei width = c.width; GLsizei height = c.height; GLenum format = c.format; GLenum type = c.type; // TODO(gman): Handle out of range rectangles. typedef gles2::ReadPixels::Result Result; uint32 pixels_size = GLES2Util::ComputeImageDataSize( width, height, format, type, pack_alignment_); void* pixels = GetSharedMemoryAs( c.pixels_shm_id, c.pixels_shm_offset, pixels_size); Result* result = GetSharedMemoryAs( c.result_shm_id, c.result_shm_offset, sizeof(*result)); if (!pixels || !result) { return error::kOutOfBounds; } if (!ValidateGLenumReadPixelFormat(format) || !ValidateGLenumPixelType(type)) { SetGLError(GL_INVALID_ENUM); return error::kNoError; } if (width < 0 || height < 0) { SetGLError(GL_INVALID_VALUE); return error::kNoError; } CopyRealGLErrorsToWrapper(); glReadPixels(x, y, width, height, format, type, pixels); GLenum error = glGetError(); if (error == GL_NO_ERROR) { *result = true; } else { SetGLError(error); } return error::kNoError; } error::Error GLES2DecoderImpl::HandlePixelStorei( uint32 immediate_data_size, const gles2::PixelStorei& c) { GLenum pname = c.pname; GLenum param = c.param; if (!ValidateGLenumPixelStore(pname)) { SetGLError(GL_INVALID_ENUM); return error::kNoError; } if (!ValidateGLintPixelStoreAlignment(param)) { SetGLError(GL_INVALID_VALUE); return error::kNoError; } glPixelStorei(pname, param); switch (pname) { case GL_PACK_ALIGNMENT: pack_alignment_ = param; break; case GL_UNPACK_ALIGNMENT: unpack_alignment_ = param; break; default: // Validation should have prevented us from getting here. DCHECK(false); break; } return error::kNoError; } error::Error GLES2DecoderImpl::HandleGetAttribLocation( uint32 immediate_data_size, const gles2::GetAttribLocation& c) { GLuint program; if (!id_manager()->GetServiceId(c.program, &program)) { SetGLError(GL_INVALID_VALUE); return error::kNoError; } ProgramManager::ProgramInfo* info = GetProgramInfo(program); if (!info) { // Program was not linked successfully. (ie, glLinkProgram) SetGLError(GL_INVALID_OPERATION); return error::kNoError; } uint32 name_size = c.data_size; const char* name = GetSharedMemoryAs( c.name_shm_id, c.name_shm_offset, name_size); GLint* location = GetSharedMemoryAs( c.location_shm_id, c.location_shm_offset, sizeof(GLint)); if (!location || !name) { return error::kOutOfBounds; } String name_str(name, name_size); *location = info->GetAttribLocation(name_str); return error::kNoError; } error::Error GLES2DecoderImpl::HandleGetAttribLocationImmediate( uint32 immediate_data_size, const gles2::GetAttribLocationImmediate& c) { GLuint program; if (!id_manager()->GetServiceId(c.program, &program)) { SetGLError(GL_INVALID_VALUE); return error::kNoError; } ProgramManager::ProgramInfo* info = GetProgramInfo(program); if (!info) { // Program was not linked successfully. (ie, glLinkProgram) SetGLError(GL_INVALID_OPERATION); return error::kNoError; } uint32 name_size = c.data_size; const char* name = GetImmediateDataAs( c, name_size, immediate_data_size); GLint* location = GetSharedMemoryAs( c.location_shm_id, c.location_shm_offset, sizeof(GLint)); if (!location || !name) { return error::kOutOfBounds; } String name_str(name, name_size); *location = info->GetAttribLocation(name_str); return error::kNoError; } error::Error GLES2DecoderImpl::HandleGetUniformLocation( uint32 immediate_data_size, const gles2::GetUniformLocation& c) { GLuint program; if (!id_manager()->GetServiceId(c.program, &program)) { SetGLError(GL_INVALID_VALUE); return error::kNoError; } ProgramManager::ProgramInfo* info = GetProgramInfo(program); if (!info) { // Program was not linked successfully. (ie, glLinkProgram) SetGLError(GL_INVALID_OPERATION); return error::kNoError; } uint32 name_size = c.data_size; const char* name = GetSharedMemoryAs( c.name_shm_id, c.name_shm_offset, name_size); GLint* location = GetSharedMemoryAs( c.location_shm_id, c.location_shm_offset, sizeof(GLint)); if (!location || !name) { return error::kOutOfBounds; } String name_str(name, name_size); *location = info->GetUniformLocation(name_str); return error::kNoError; } error::Error GLES2DecoderImpl::HandleGetUniformLocationImmediate( uint32 immediate_data_size, const gles2::GetUniformLocationImmediate& c) { GLuint program; if (!id_manager()->GetServiceId(c.program, &program)) { SetGLError(GL_INVALID_VALUE); return error::kNoError; } ProgramManager::ProgramInfo* info = GetProgramInfo(program); if (!info) { // Program was not linked successfully. (ie, glLinkProgram) SetGLError(GL_INVALID_OPERATION); return error::kNoError; } uint32 name_size = c.data_size; const char* name = GetImmediateDataAs( c, name_size, immediate_data_size); GLint* location = GetSharedMemoryAs( c.location_shm_id, c.location_shm_offset, sizeof(GLint)); if (!location || !name) { return error::kOutOfBounds; } String name_str(name, name_size); *location = info->GetUniformLocation(name_str); return error::kNoError; } error::Error GLES2DecoderImpl::HandleGetString( uint32 immediate_data_size, const gles2::GetString& c) { GLenum name = static_cast(c.name); if (!ValidateGLenumStringType(name)) { SetGLError(GL_INVALID_ENUM); return error::kNoError; } Bucket* bucket = CreateBucket(c.bucket_id); bucket->SetFromString(reinterpret_cast(glGetString(name))); return error::kNoError; } error::Error GLES2DecoderImpl::HandleBufferData( uint32 immediate_data_size, const gles2::BufferData& c) { GLenum target = static_cast(c.target); GLsizeiptr size = static_cast(c.size); uint32 data_shm_id = static_cast(c.data_shm_id); uint32 data_shm_offset = static_cast(c.data_shm_offset); GLenum usage = static_cast(c.usage); const void* data = NULL; if (data_shm_id != 0 || data_shm_offset != 0) { data = GetSharedMemoryAs(data_shm_id, data_shm_offset, size); if (!data) { return error::kOutOfBounds; } } if (!ValidateGLenumBufferTarget(target) || !ValidateGLenumBufferUsage(usage)) { SetGLError(GL_INVALID_ENUM); return error::kNoError; } if (size < 0) { SetGLError(GL_INVALID_VALUE); return error::kNoError; } BufferManager::BufferInfo* info = GetBufferInfoForTarget(target); if (!info) { SetGLError(GL_INVALID_OPERATION); return error::kNoError; } // Clear the buffer to 0 if no initial data was passed in. scoped_array zero; if (!data) { zero.reset(new int8[size]); memset(zero.get(), 0, size); data = zero.get(); } CopyRealGLErrorsToWrapper(); glBufferData(target, size, data, usage); GLenum error = glGetError(); if (error != GL_NO_ERROR) { SetGLError(error); } else { info->set_size(size); } return error::kNoError; } error::Error GLES2DecoderImpl::HandleBufferDataImmediate( uint32 immediate_data_size, const gles2::BufferDataImmediate& c) { GLenum target = static_cast(c.target); GLsizeiptr size = static_cast(c.size); const void* data = GetImmediateDataAs( c, size, immediate_data_size); if (!data) { return error::kOutOfBounds; } GLenum usage = static_cast(c.usage); if (!ValidateGLenumBufferTarget(target) || !ValidateGLenumBufferUsage(usage)) { SetGLError(GL_INVALID_ENUM); return error::kNoError; } if (size < 0) { SetGLError(GL_INVALID_VALUE); return error::kNoError; } BufferManager::BufferInfo* info = GetBufferInfoForTarget(target); if (!info) { SetGLError(GL_INVALID_OPERATION); return error::kNoError; } CopyRealGLErrorsToWrapper(); glBufferData(target, size, data, usage); GLenum error = glGetError(); if (error != GL_NO_ERROR) { SetGLError(error); } else { info->set_size(size); } return error::kNoError; } error::Error GLES2DecoderImpl::DoCompressedTexImage2D( GLenum target, GLint level, GLenum internal_format, GLsizei width, GLsizei height, GLint border, GLsizei image_size, const void* data) { // TODO(gman): Validate internal_format // TODO(gman): Validate image_size is correct for width, height and format. if (!ValidateGLenumTextureTarget(target)) { SetGLError(GL_INVALID_ENUM); return error::kNoError; } if (!texture_manager()->ValidForTarget(target, level, width, height, 1) || border != 0) { SetGLError(GL_INVALID_VALUE); return error::kNoError; } TextureManager::TextureInfo* info = GetTextureInfoForTarget(target); if (!info) { SetGLError(GL_INVALID_OPERATION); return error::kNoError; } scoped_array zero; if (!data) { zero.reset(new int8[image_size]); memset(zero.get(), 0, image_size); data = zero.get(); } info->SetLevelInfo( target, level, internal_format, width, height, 1, border, 0, 0); glCompressedTexImage2D( target, level, internal_format, width, height, border, image_size, data); return error::kNoError; } error::Error GLES2DecoderImpl::HandleCompressedTexImage2D( uint32 immediate_data_size, const gles2::CompressedTexImage2D& c) { GLenum target = static_cast(c.target); GLint level = static_cast(c.level); GLenum internal_format = static_cast(c.internalformat); GLsizei width = static_cast(c.width); GLsizei height = static_cast(c.height); GLint border = static_cast(c.border); GLsizei image_size = static_cast(c.imageSize); uint32 data_shm_id = static_cast(c.data_shm_id); uint32 data_shm_offset = static_cast(c.data_shm_offset); const void* data = NULL; if (data_shm_id != 0 || data_shm_offset != 0) { data = GetSharedMemoryAs( data_shm_id, data_shm_offset, image_size); if (!data) { return error::kOutOfBounds; } } return DoCompressedTexImage2D( target, level, internal_format, width, height, border, image_size, data); } error::Error GLES2DecoderImpl::HandleCompressedTexImage2DImmediate( uint32 immediate_data_size, const gles2::CompressedTexImage2DImmediate& c) { GLenum target = static_cast(c.target); GLint level = static_cast(c.level); GLenum internal_format = static_cast(c.internalformat); GLsizei width = static_cast(c.width); GLsizei height = static_cast(c.height); GLint border = static_cast(c.border); GLsizei image_size = static_cast(c.imageSize); const void* data = GetImmediateDataAs( c, image_size, immediate_data_size); if (!data) { return error::kOutOfBounds; } return DoCompressedTexImage2D( target, level, internal_format, width, height, border, image_size, data); } error::Error GLES2DecoderImpl::DoTexImage2D( GLenum target, GLint level, GLenum internal_format, GLsizei width, GLsizei height, GLint border, GLenum format, GLenum type, const void* pixels, uint32 pixels_size) { if (!ValidateGLenumTextureTarget(target) || !ValidateGLenumTextureFormat(internal_format) || !ValidateGLenumTextureFormat(format) || !ValidateGLenumPixelType(type)) { SetGLError(GL_INVALID_ENUM); return error::kNoError; } if (!texture_manager()->ValidForTarget(target, level, width, height, 1) || border != 0) { SetGLError(GL_INVALID_VALUE); return error::kNoError; } TextureManager::TextureInfo* info = GetTextureInfoForTarget(target); if (!info) { SetGLError(GL_INVALID_OPERATION); return error::kNoError; } scoped_array zero; if (!pixels) { zero.reset(new int8[pixels_size]); memset(zero.get(), 0, pixels_size); pixels = zero.get(); } info->SetLevelInfo( target, level, internal_format, width, height, 1, border, format, type); glTexImage2D( target, level, internal_format, width, height, border, format, type, pixels); return error::kNoError; } error::Error GLES2DecoderImpl::HandleTexImage2D( uint32 immediate_data_size, const gles2::TexImage2D& c) { GLenum target = static_cast(c.target); GLint level = static_cast(c.level); GLint internal_format = static_cast(c.internalformat); GLsizei width = static_cast(c.width); GLsizei height = static_cast(c.height); GLint border = static_cast(c.border); GLenum format = static_cast(c.format); GLenum type = static_cast(c.type); uint32 pixels_shm_id = static_cast(c.pixels_shm_id); uint32 pixels_shm_offset = static_cast(c.pixels_shm_offset); uint32 pixels_size = GLES2Util::ComputeImageDataSize( width, height, format, type, unpack_alignment_); const void* pixels = NULL; if (pixels_shm_id != 0 || pixels_shm_offset != 0) { pixels = GetSharedMemoryAs( pixels_shm_id, pixels_shm_offset, pixels_size); if (!pixels) { return error::kOutOfBounds; } } return DoTexImage2D( target, level, internal_format, width, height, border, format, type, pixels, pixels_size); } error::Error GLES2DecoderImpl::HandleTexImage2DImmediate( uint32 immediate_data_size, const gles2::TexImage2DImmediate& c) { GLenum target = static_cast(c.target); GLint level = static_cast(c.level); GLint internal_format = static_cast(c.internalformat); GLsizei width = static_cast(c.width); GLsizei height = static_cast(c.height); GLint border = static_cast(c.border); GLenum format = static_cast(c.format); GLenum type = static_cast(c.type); uint32 size = GLES2Util::ComputeImageDataSize( width, height, format, type, unpack_alignment_); const void* pixels = GetImmediateDataAs( c, size, immediate_data_size); if (!pixels) { return error::kOutOfBounds; } DoTexImage2D( target, level, internal_format, width, height, border, format, type, pixels, size); return error::kNoError; } error::Error GLES2DecoderImpl::HandleGetVertexAttribPointerv( uint32 immediate_data_size, const gles2::GetVertexAttribPointerv& c) { GLuint index = static_cast(c.index); GLenum pname = static_cast(c.pname); typedef gles2::GetVertexAttribPointerv::Result Result; Result* result = GetSharedMemoryAs( c.pointer_shm_id, c.pointer_shm_offset, Result::ComputeSize(1)); if (!result) { return error::kOutOfBounds; } // Check that the client initialized the result. if (result->size != 0) { return error::kInvalidArguments; } if (!ValidateGLenumVertexPointer(pname)) { SetGLError(GL_INVALID_ENUM); return error::kNoError; } if (index >= group_->max_vertex_attribs()) { SetGLError(GL_INVALID_VALUE); return error::kNoError; } result->SetNumResults(1); *result->GetData() = vertex_attrib_infos_[index].offset(); return error::kNoError; } bool GLES2DecoderImpl::GetUniformSetup( GLuint program, GLint location, uint32 shm_id, uint32 shm_offset, error::Error* error, GLuint* service_id, void** result_pointer) { *error = error::kNoError; // Make sure we have enough room for the result on failure. SizedResult* result; result = GetSharedMemoryAs*>( shm_id, shm_offset, SizedResult::ComputeSize(0)); if (!result) { *error = error::kOutOfBounds; return false; } *result_pointer = result; // Set the result size to 0 so the client does not have to check for success. result->SetNumResults(0); if (!id_manager()->GetServiceId(program, service_id)) { SetGLError(GL_INVALID_VALUE); return error::kNoError; } ProgramManager::ProgramInfo* info = GetProgramInfo(*service_id); if (!info) { // Program was not linked successfully. (ie, glLinkProgram) SetGLError(GL_INVALID_OPERATION); return false; } GLenum type; if (!info->GetUniformTypeByLocation(location, &type)) { // No such location. SetGLError(GL_INVALID_OPERATION); return false; } GLsizei size = GLES2Util::GetGLDataTypeSizeForUniforms(type); if (size == 0) { SetGLError(GL_INVALID_OPERATION); return false; } result = GetSharedMemoryAs*>( shm_id, shm_offset, SizedResult::ComputeSizeFromBytes(size)); if (!result) { *error = error::kOutOfBounds; return false; } result->size = size; return true; } error::Error GLES2DecoderImpl::HandleGetUniformiv( uint32 immediate_data_size, const gles2::GetUniformiv& c) { GLuint program = c.program; GLint location = c.location; GLuint service_id; Error error; void* result; if (GetUniformSetup( program, location, c.params_shm_id, c.params_shm_offset, &error, &service_id, &result)) { glGetUniformiv( service_id, location, static_cast(result)->GetData()); } return error; } error::Error GLES2DecoderImpl::HandleGetUniformfv( uint32 immediate_data_size, const gles2::GetUniformfv& c) { GLuint program = c.program; GLint location = c.location; GLuint service_id; Error error; void* result; typedef gles2::GetUniformfv::Result Result; if (GetUniformSetup( program, location, c.params_shm_id, c.params_shm_offset, &error, &service_id, &result)) { glGetUniformfv( service_id, location, static_cast(result)->GetData()); } return error; } error::Error GLES2DecoderImpl::HandleGetShaderPrecisionFormat( uint32 immediate_data_size, const gles2::GetShaderPrecisionFormat& c) { GLenum shader_type = static_cast(c.shadertype); GLenum precision_type = static_cast(c.precisiontype); typedef gles2::GetShaderPrecisionFormat::Result Result; Result* result = GetSharedMemoryAs( c.result_shm_id, c.result_shm_offset, sizeof(*result)); if (!result) { return error::kOutOfBounds; } // Check that the client initialized the result. if (result->success != 0) { return error::kInvalidArguments; } if (!ValidateGLenumShaderType(shader_type) || !ValidateGLenumShaderPrecision(precision_type)) { SetGLError(GL_INVALID_ENUM); } else { result->success = 1; // true switch (precision_type) { case GL_LOW_INT: case GL_MEDIUM_INT: case GL_HIGH_INT: result->min_range = -31; result->max_range = 31; result->precision = 0; case GL_LOW_FLOAT: case GL_MEDIUM_FLOAT: case GL_HIGH_FLOAT: result->min_range = -62; result->max_range = 62; result->precision = -16; break; default: NOTREACHED(); break; } } return error::kNoError; } error::Error GLES2DecoderImpl::HandleGetAttachedShaders( uint32 immediate_data_size, const gles2::GetAttachedShaders& c) { GLuint service_id; uint32 result_size = c.result_size; if (!id_manager()->GetServiceId(c.program, &service_id)) { SetGLError(GL_INVALID_VALUE); return error::kNoError; } typedef gles2::GetAttachedShaders::Result Result; uint32 max_count = Result::ComputeMaxResults(result_size); Result* result = GetSharedMemoryAs( c.result_shm_id, c.result_shm_offset, Result::ComputeSize(max_count)); if (!result) { return error::kOutOfBounds; } // Check that the client initialized the result. if (result->size != 0) { return error::kInvalidArguments; } GLsizei count = 0; glGetAttachedShaders(service_id, max_count, &count, result->GetData()); for (GLsizei ii = 0; ii < count; ++ii) { if (!id_manager()->GetClientId(result->GetData()[ii], &result->GetData()[ii])) { NOTREACHED(); return error::kGenericError; } } result->SetNumResults(count); return error::kNoError; } error::Error GLES2DecoderImpl::HandleGetActiveUniform( uint32 immediate_data_size, const gles2::GetActiveUniform& c) { GLuint program = c.program; GLuint index = c.index; uint32 name_bucket_id = c.name_bucket_id; GLuint service_id; typedef gles2::GetActiveUniform::Result Result; Result* result = GetSharedMemoryAs( c.result_shm_id, c.result_shm_offset, sizeof(*result)); if (!result) { return error::kOutOfBounds; } // Check that the client initialized the result. if (result->success != 0) { return error::kInvalidArguments; } if (!id_manager()->GetServiceId(program, &service_id)) { SetGLError(GL_INVALID_VALUE); return error::kNoError; } ProgramManager::ProgramInfo* info = GetProgramInfo(service_id); if (!info) { // Program was not linked successfully. (ie, glLinkProgram) SetGLError(GL_INVALID_OPERATION); return error::kNoError; } const ProgramManager::ProgramInfo::UniformInfo* uniform_info = info->GetUniformInfo(index); if (!uniform_info) { SetGLError(GL_INVALID_VALUE); return error::kNoError; } result->success = 1; // true. result->size = uniform_info->size; result->type = uniform_info->type; Bucket* bucket = CreateBucket(name_bucket_id); bucket->SetFromString(uniform_info->name); return error::kNoError; } error::Error GLES2DecoderImpl::HandleGetActiveAttrib( uint32 immediate_data_size, const gles2::GetActiveAttrib& c) { GLuint program = c.program; GLuint index = c.index; uint32 name_bucket_id = c.name_bucket_id; GLuint service_id; typedef gles2::GetActiveAttrib::Result Result; Result* result = GetSharedMemoryAs( c.result_shm_id, c.result_shm_offset, sizeof(*result)); if (!result) { return error::kOutOfBounds; } // Check that the client initialized the result. if (result->success != 0) { return error::kInvalidArguments; } if (!id_manager()->GetServiceId(program, &service_id)) { SetGLError(GL_INVALID_VALUE); return error::kNoError; } ProgramManager::ProgramInfo* info = GetProgramInfo(service_id); if (!info) { // Program was not linked successfully. (ie, glLinkProgram) SetGLError(GL_INVALID_OPERATION); return error::kNoError; } const ProgramManager::ProgramInfo::VertexAttribInfo* attrib_info = info->GetAttribInfo(index); if (!attrib_info) { SetGLError(GL_INVALID_VALUE); return error::kNoError; } result->success = 1; // true. result->size = attrib_info->size; result->type = attrib_info->type; Bucket* bucket = CreateBucket(name_bucket_id); bucket->SetFromString(attrib_info->name); return error::kNoError; } // Include the auto-generated part of this file. We split this because it means // we can easily edit the non-auto generated parts right here in this file // instead of having to edit some template or the code generator. #include "gpu/command_buffer/service/gles2_cmd_decoder_autogen.h" } // namespace gles2 } // namespace gpu