// Copyright (c) 2008 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "ipc/ipc_channel_posix.h" #include #include #include #include #include #include #include #include #include #include "base/command_line.h" #include "base/eintr_wrapper.h" #include "base/global_descriptors_posix.h" #include "base/lock.h" #include "base/logging.h" #include "base/process_util.h" #include "base/scoped_ptr.h" #include "base/singleton.h" #include "base/stats_counters.h" #include "base/string_util.h" #include "ipc/ipc_descriptors.h" #include "ipc/ipc_switches.h" #include "ipc/file_descriptor_set_posix.h" #include "ipc/ipc_logging.h" #include "ipc/ipc_message_utils.h" namespace IPC { // IPC channels on Windows use named pipes (CreateNamedPipe()) with // channel ids as the pipe names. Channels on POSIX use anonymous // Unix domain sockets created via socketpair() as pipes. These don't // quite line up. // // When creating a child subprocess, the parent side of the fork // arranges it such that the initial control channel ends up on the // magic file descriptor kPrimaryIPCChannel in the child. Future // connections (file descriptors) can then be passed via that // connection via sendmsg(). //------------------------------------------------------------------------------ namespace { // The PipeMap class works around this quirk related to unit tests: // // When running as a server, we install the client socket in a // specific file descriptor number (@kPrimaryIPCChannel). However, we // also have to support the case where we are running unittests in the // same process. (We do not support forking without execing.) // // Case 1: normal running // The IPC server object will install a mapping in PipeMap from the // name which it was given to the client pipe. When forking the client, the // GetClientFileDescriptorMapping will ensure that the socket is installed in // the magic slot (@kPrimaryIPCChannel). The client will search for the // mapping, but it won't find any since we are in a new process. Thus the // magic fd number is returned. Once the client connects, the server will // close its copy of the client socket and remove the mapping. // // Case 2: unittests - client and server in the same process // The IPC server will install a mapping as before. The client will search // for a mapping and find out. It duplicates the file descriptor and // connects. Once the client connects, the server will close the original // copy of the client socket and remove the mapping. Thus, when the client // object closes, it will close the only remaining copy of the client socket // in the fd table and the server will see EOF on its side. // // TODO(port): a client process cannot connect to multiple IPC channels with // this scheme. class PipeMap { public: // Lookup a given channel id. Return -1 if not found. int Lookup(const std::string& channel_id) { AutoLock locked(lock_); ChannelToFDMap::const_iterator i = map_.find(channel_id); if (i == map_.end()) return -1; return i->second; } // Remove the mapping for the given channel id. No error is signaled if the // channel_id doesn't exist void RemoveAndClose(const std::string& channel_id) { AutoLock locked(lock_); ChannelToFDMap::iterator i = map_.find(channel_id); if (i != map_.end()) { HANDLE_EINTR(close(i->second)); map_.erase(i); } } // Insert a mapping from @channel_id to @fd. It's a fatal error to insert a // mapping if one already exists for the given channel_id void Insert(const std::string& channel_id, int fd) { AutoLock locked(lock_); DCHECK(fd != -1); ChannelToFDMap::const_iterator i = map_.find(channel_id); CHECK(i == map_.end()) << "Creating second IPC server (fd " << fd << ") " << "for '" << channel_id << "' while first " << "(fd " << i->second << ") still exists"; map_[channel_id] = fd; } private: Lock lock_; typedef std::map ChannelToFDMap; ChannelToFDMap map_; }; // Used to map a channel name to the equivalent FD # in the current process. // Returns -1 if the channel is unknown. int ChannelNameToFD(const std::string& channel_id) { // See the large block comment above PipeMap for the reasoning here. const int fd = Singleton()->Lookup(channel_id); if (fd != -1) { int dup_fd = dup(fd); if (dup_fd < 0) PLOG(FATAL) << "dup(" << fd << ")"; return dup_fd; } return fd; } //------------------------------------------------------------------------------ sockaddr_un sizecheck; const size_t kMaxPipeNameLength = sizeof(sizecheck.sun_path); // Creates a Fifo with the specified name ready to listen on. bool CreateServerFifo(const std::string& pipe_name, int* server_listen_fd) { DCHECK(server_listen_fd); DCHECK_GT(pipe_name.length(), 0u); DCHECK_LT(pipe_name.length(), kMaxPipeNameLength); if (pipe_name.length() == 0 || pipe_name.length() >= kMaxPipeNameLength) { return false; } // Create socket. int fd = socket(AF_UNIX, SOCK_STREAM, 0); if (fd < 0) { return false; } // Make socket non-blocking if (fcntl(fd, F_SETFL, O_NONBLOCK) == -1) { HANDLE_EINTR(close(fd)); return false; } // Delete any old FS instances. unlink(pipe_name.c_str()); // Create unix_addr structure struct sockaddr_un unix_addr; memset(&unix_addr, 0, sizeof(unix_addr)); unix_addr.sun_family = AF_UNIX; snprintf(unix_addr.sun_path, kMaxPipeNameLength, "%s", pipe_name.c_str()); size_t unix_addr_len = offsetof(struct sockaddr_un, sun_path) + strlen(unix_addr.sun_path) + 1; // Bind the socket. if (bind(fd, reinterpret_cast(&unix_addr), unix_addr_len) != 0) { HANDLE_EINTR(close(fd)); return false; } // Start listening on the socket. const int listen_queue_length = 1; if (listen(fd, listen_queue_length) != 0) { HANDLE_EINTR(close(fd)); return false; } *server_listen_fd = fd; return true; } // Accept a connection on a fifo. bool ServerAcceptFifoConnection(int server_listen_fd, int* server_socket) { DCHECK(server_socket); int accept_fd = HANDLE_EINTR(accept(server_listen_fd, NULL, 0)); if (accept_fd < 0) return false; if (fcntl(accept_fd, F_SETFL, O_NONBLOCK) == -1) { HANDLE_EINTR(close(accept_fd)); return false; } *server_socket = accept_fd; return true; } bool ClientConnectToFifo(const std::string &pipe_name, int* client_socket) { DCHECK(client_socket); DCHECK_LT(pipe_name.length(), kMaxPipeNameLength); // Create socket. int fd = socket(AF_UNIX, SOCK_STREAM, 0); if (fd < 0) { LOG(ERROR) << "fd is invalid"; return false; } // Make socket non-blocking if (fcntl(fd, F_SETFL, O_NONBLOCK) == -1) { LOG(ERROR) << "fcntl failed"; HANDLE_EINTR(close(fd)); return false; } // Create server side of socket. struct sockaddr_un server_unix_addr; memset(&server_unix_addr, 0, sizeof(server_unix_addr)); server_unix_addr.sun_family = AF_UNIX; snprintf(server_unix_addr.sun_path, kMaxPipeNameLength, "%s", pipe_name.c_str()); size_t server_unix_addr_len = offsetof(struct sockaddr_un, sun_path) + strlen(server_unix_addr.sun_path) + 1; if (HANDLE_EINTR(connect(fd, reinterpret_cast(&server_unix_addr), server_unix_addr_len)) != 0) { HANDLE_EINTR(close(fd)); return false; } *client_socket = fd; return true; } bool SocketWriteErrorIsRecoverable() { #if defined(OS_MACOSX) // On OS X if sendmsg() is trying to send fds between processes and there // isn't enough room in the output buffer to send the fd structure over // atomically then EMSGSIZE is returned. // // EMSGSIZE presents a problem since the system APIs can only call us when // there's room in the socket buffer and not when there is "enough" room. // // The current behavior is to return to the event loop when EMSGSIZE is // received and hopefull service another FD. This is however still // technically a busy wait since the event loop will call us right back until // the receiver has read enough data to allow passing the FD over atomically. return errno == EAGAIN || errno == EMSGSIZE; #else return errno == EAGAIN; #endif } } // namespace //------------------------------------------------------------------------------ Channel::ChannelImpl::ChannelImpl(const std::string& channel_id, Mode mode, Listener* listener) : mode_(mode), is_blocked_on_write_(false), message_send_bytes_written_(0), uses_fifo_(CommandLine::ForCurrentProcess()->HasSwitch( switches::kIPCUseFIFO)), server_listen_pipe_(-1), pipe_(-1), client_pipe_(-1), #if defined(OS_LINUX) fd_pipe_(-1), remote_fd_pipe_(-1), #endif listener_(listener), waiting_connect_(true), factory_(this) { if (!CreatePipe(channel_id, mode)) { // The pipe may have been closed already. PLOG(WARNING) << "Unable to create pipe named \"" << channel_id << "\" in " << (mode == MODE_SERVER ? "server" : "client") << " mode"; } } // static void AddChannelSocket(const std::string& name, int socket) { Singleton()->Insert(name, socket); } // static void RemoveAndCloseChannelSocket(const std::string& name) { Singleton()->RemoveAndClose(name); } // static bool ChannelSocketExists(const std::string& name) { return Singleton()->Lookup(name) != -1; } // static bool SocketPair(int* fd1, int* fd2) { int pipe_fds[2]; if (socketpair(AF_UNIX, SOCK_STREAM, 0, pipe_fds) != 0) { PLOG(ERROR) << "socketpair()"; return false; } // Set both ends to be non-blocking. if (fcntl(pipe_fds[0], F_SETFL, O_NONBLOCK) == -1 || fcntl(pipe_fds[1], F_SETFL, O_NONBLOCK) == -1) { PLOG(ERROR) << "fcntl(O_NONBLOCK)"; HANDLE_EINTR(close(pipe_fds[0])); HANDLE_EINTR(close(pipe_fds[1])); return false; } *fd1 = pipe_fds[0]; *fd2 = pipe_fds[1]; return true; } bool Channel::ChannelImpl::CreatePipe(const std::string& channel_id, Mode mode) { DCHECK(server_listen_pipe_ == -1 && pipe_ == -1); if (uses_fifo_) { // This only happens in unit tests; see the comment above PipeMap. // TODO(playmobil): We shouldn't need to create fifos on disk. // TODO(playmobil): If we do, they should be in the user data directory. // TODO(playmobil): Cleanup any stale fifos. pipe_name_ = "/var/tmp/chrome_" + channel_id; if (mode == MODE_SERVER) { if (!CreateServerFifo(pipe_name_, &server_listen_pipe_)) { return false; } } else { if (!ClientConnectToFifo(pipe_name_, &pipe_)) { return false; } waiting_connect_ = false; } } else { // This is the normal (non-unit-test) case, where we're using sockets. // Three possible cases: // 1) It's for a channel we already have a pipe for; reuse it. // 2) It's the initial IPC channel: // 2a) Server side: create the pipe. // 2b) Client side: Pull the pipe out of the GlobalDescriptors set. pipe_name_ = channel_id; pipe_ = ChannelNameToFD(pipe_name_); if (pipe_ < 0) { // Initial IPC channel. if (mode == MODE_SERVER) { if (!SocketPair(&pipe_, &client_pipe_)) return false; AddChannelSocket(pipe_name_, client_pipe_); } else { // Guard against inappropriate reuse of the initial IPC channel. If // an IPC channel closes and someone attempts to reuse it by name, the // initial channel must not be recycled here. http://crbug.com/26754. static bool used_initial_channel = false; if (used_initial_channel) { LOG(FATAL) << "Denying attempt to reuse initial IPC channel for " << pipe_name_; return false; } used_initial_channel = true; pipe_ = Singleton()->Get(kPrimaryIPCChannel); } } else { waiting_connect_ = mode == MODE_SERVER; } } // Create the Hello message to be sent when Connect is called scoped_ptr msg(new Message(MSG_ROUTING_NONE, HELLO_MESSAGE_TYPE, IPC::Message::PRIORITY_NORMAL)); #if defined(OS_LINUX) if (!uses_fifo_) { // On Linux, the seccomp sandbox makes it very expensive to call // recvmsg() and sendmsg(). Often, we are perfectly OK with resorting to // read() and write(), which are cheap. // // As we cannot anticipate, when the sender will provide us with file // handles, we have to make the decision about whether we call read() or // recvmsg() before we actually make the call. The easiest option is to // create a dedicated socketpair() for exchanging file handles. if (mode == MODE_SERVER) { fd_pipe_ = -1; } else if (remote_fd_pipe_ == -1) { if (!SocketPair(&fd_pipe_, &remote_fd_pipe_)) { return false; } } } #endif if (!msg->WriteInt(base::GetCurrentProcId())) { Close(); return false; } output_queue_.push(msg.release()); return true; } bool Channel::ChannelImpl::Connect() { if (mode_ == MODE_SERVER && uses_fifo_) { if (server_listen_pipe_ == -1) { return false; } MessageLoopForIO::current()->WatchFileDescriptor( server_listen_pipe_, true, MessageLoopForIO::WATCH_READ, &server_listen_connection_watcher_, this); } else { if (pipe_ == -1) { return false; } MessageLoopForIO::current()->WatchFileDescriptor( pipe_, true, MessageLoopForIO::WATCH_READ, &read_watcher_, this); waiting_connect_ = mode_ == MODE_SERVER; } if (!waiting_connect_) return ProcessOutgoingMessages(); return true; } bool Channel::ChannelImpl::ProcessIncomingMessages() { ssize_t bytes_read = 0; struct msghdr msg = {0}; struct iovec iov = {input_buf_, Channel::kReadBufferSize}; msg.msg_iovlen = 1; msg.msg_control = input_cmsg_buf_; for (;;) { msg.msg_iov = &iov; if (bytes_read == 0) { if (pipe_ == -1) return false; // Read from pipe. // recvmsg() returns 0 if the connection has closed or EAGAIN if no data // is waiting on the pipe. #if defined(OS_LINUX) if (fd_pipe_ >= 0) { bytes_read = HANDLE_EINTR(read(pipe_, input_buf_, Channel::kReadBufferSize)); msg.msg_controllen = 0; } else #endif { msg.msg_controllen = sizeof(input_cmsg_buf_); bytes_read = HANDLE_EINTR(recvmsg(pipe_, &msg, MSG_DONTWAIT)); } if (bytes_read < 0) { if (errno == EAGAIN) { return true; #if defined(OS_MACOSX) } else if (errno == EPERM) { // On OSX, reading from a pipe with no listener returns EPERM // treat this as a special case to prevent spurious error messages // to the console. return false; #endif // defined(OS_MACOSX) } else if (errno == ECONNRESET || errno == EPIPE) { return false; } else { PLOG(ERROR) << "pipe error (" << pipe_ << ")"; return false; } } else if (bytes_read == 0) { // The pipe has closed... return false; } } DCHECK(bytes_read); if (client_pipe_ != -1) { Singleton()->RemoveAndClose(pipe_name_); client_pipe_ = -1; } // a pointer to an array of |num_wire_fds| file descriptors from the read const int* wire_fds = NULL; unsigned num_wire_fds = 0; // walk the list of control messages and, if we find an array of file // descriptors, save a pointer to the array // This next if statement is to work around an OSX issue where // CMSG_FIRSTHDR will return non-NULL in the case that controllen == 0. // Here's a test case: // // int main() { // struct msghdr msg; // msg.msg_control = &msg; // msg.msg_controllen = 0; // if (CMSG_FIRSTHDR(&msg)) // printf("Bug found!\n"); // } if (msg.msg_controllen > 0) { // On OSX, CMSG_FIRSTHDR doesn't handle the case where controllen is 0 // and will return a pointer into nowhere. for (struct cmsghdr* cmsg = CMSG_FIRSTHDR(&msg); cmsg; cmsg = CMSG_NXTHDR(&msg, cmsg)) { if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) { const unsigned payload_len = cmsg->cmsg_len - CMSG_LEN(0); DCHECK(payload_len % sizeof(int) == 0); wire_fds = reinterpret_cast(CMSG_DATA(cmsg)); num_wire_fds = payload_len / 4; if (msg.msg_flags & MSG_CTRUNC) { LOG(ERROR) << "SCM_RIGHTS message was truncated" << " cmsg_len:" << cmsg->cmsg_len << " fd:" << pipe_; for (unsigned i = 0; i < num_wire_fds; ++i) HANDLE_EINTR(close(wire_fds[i])); return false; } break; } } } // Process messages from input buffer. const char *p; const char *end; if (input_overflow_buf_.empty()) { p = input_buf_; end = p + bytes_read; } else { if (input_overflow_buf_.size() > static_cast(kMaximumMessageSize - bytes_read)) { input_overflow_buf_.clear(); LOG(ERROR) << "IPC message is too big"; return false; } input_overflow_buf_.append(input_buf_, bytes_read); p = input_overflow_buf_.data(); end = p + input_overflow_buf_.size(); } // A pointer to an array of |num_fds| file descriptors which includes any // fds that have spilled over from a previous read. const int* fds = NULL; unsigned num_fds = 0; unsigned fds_i = 0; // the index of the first unused descriptor if (input_overflow_fds_.empty()) { fds = wire_fds; num_fds = num_wire_fds; } else { if (num_wire_fds > 0) { const size_t prev_size = input_overflow_fds_.size(); input_overflow_fds_.resize(prev_size + num_wire_fds); memcpy(&input_overflow_fds_[prev_size], wire_fds, num_wire_fds * sizeof(int)); } fds = &input_overflow_fds_[0]; num_fds = input_overflow_fds_.size(); } while (p < end) { const char* message_tail = Message::FindNext(p, end); if (message_tail) { int len = static_cast(message_tail - p); Message m(p, len); if (m.header()->num_fds) { // the message has file descriptors const char* error = NULL; if (m.header()->num_fds > num_fds - fds_i) { // the message has been completely received, but we didn't get // enough file descriptors. #if defined(OS_LINUX) if (!uses_fifo_) { char dummy; struct iovec fd_pipe_iov = { &dummy, 1 }; msg.msg_iov = &fd_pipe_iov; msg.msg_controllen = sizeof(input_cmsg_buf_); ssize_t n = HANDLE_EINTR(recvmsg(fd_pipe_, &msg, MSG_DONTWAIT)); if (n == 1 && msg.msg_controllen > 0) { for (struct cmsghdr* cmsg = CMSG_FIRSTHDR(&msg); cmsg; cmsg = CMSG_NXTHDR(&msg, cmsg)) { if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) { const unsigned payload_len = cmsg->cmsg_len - CMSG_LEN(0); DCHECK(payload_len % sizeof(int) == 0); wire_fds = reinterpret_cast(CMSG_DATA(cmsg)); num_wire_fds = payload_len / 4; if (msg.msg_flags & MSG_CTRUNC) { LOG(ERROR) << "SCM_RIGHTS message was truncated" << " cmsg_len:" << cmsg->cmsg_len << " fd:" << pipe_; for (unsigned i = 0; i < num_wire_fds; ++i) HANDLE_EINTR(close(wire_fds[i])); return false; } break; } } if (input_overflow_fds_.empty()) { fds = wire_fds; num_fds = num_wire_fds; } else { if (num_wire_fds > 0) { const size_t prev_size = input_overflow_fds_.size(); input_overflow_fds_.resize(prev_size + num_wire_fds); memcpy(&input_overflow_fds_[prev_size], wire_fds, num_wire_fds * sizeof(int)); } fds = &input_overflow_fds_[0]; num_fds = input_overflow_fds_.size(); } } } if (m.header()->num_fds > num_fds - fds_i) #endif error = "Message needs unreceived descriptors"; } if (m.header()->num_fds > FileDescriptorSet::MAX_DESCRIPTORS_PER_MESSAGE) { // There are too many descriptors in this message error = "Message requires an excessive number of descriptors"; } if (error) { LOG(WARNING) << error << " channel:" << this << " message-type:" << m.type() << " header()->num_fds:" << m.header()->num_fds << " num_fds:" << num_fds << " fds_i:" << fds_i; // close the existing file descriptors so that we don't leak them for (unsigned i = fds_i; i < num_fds; ++i) HANDLE_EINTR(close(fds[i])); input_overflow_fds_.clear(); // abort the connection return false; } m.file_descriptor_set()->SetDescriptors( &fds[fds_i], m.header()->num_fds); fds_i += m.header()->num_fds; } #ifdef IPC_MESSAGE_DEBUG_EXTRA DLOG(INFO) << "received message on channel @" << this << " with type " << m.type(); #endif if (m.routing_id() == MSG_ROUTING_NONE && m.type() == HELLO_MESSAGE_TYPE) { // The Hello message contains only the process id. void *iter = NULL; int pid; if (!m.ReadInt(&iter, &pid)) { NOTREACHED(); } #if defined(OS_LINUX) if (mode_ == MODE_SERVER && !uses_fifo_) { // On Linux, the Hello message from the client to the server // also contains the fd_pipe_, which will be used for all // subsequent file descriptor passing. DCHECK_EQ(m.file_descriptor_set()->size(), 1); base::FileDescriptor descriptor; if (!m.ReadFileDescriptor(&iter, &descriptor)) { NOTREACHED(); } fd_pipe_ = descriptor.fd; CHECK(descriptor.auto_close); } #endif listener_->OnChannelConnected(pid); } else { listener_->OnMessageReceived(m); } p = message_tail; } else { // Last message is partial. break; } input_overflow_fds_ = std::vector(&fds[fds_i], &fds[num_fds]); fds_i = 0; fds = &input_overflow_fds_[0]; num_fds = input_overflow_fds_.size(); } input_overflow_buf_.assign(p, end - p); input_overflow_fds_ = std::vector(&fds[fds_i], &fds[num_fds]); // When the input data buffer is empty, the overflow fds should be too. If // this is not the case, we probably have a rogue renderer which is trying // to fill our descriptor table. if (input_overflow_buf_.empty() && !input_overflow_fds_.empty()) { // We close these descriptors in Close() return false; } bytes_read = 0; // Get more data. } return true; } bool Channel::ChannelImpl::ProcessOutgoingMessages() { DCHECK(!waiting_connect_); // Why are we trying to send messages if there's // no connection? is_blocked_on_write_ = false; if (output_queue_.empty()) { return true; } if (pipe_ == -1) { return false; } // Write out all the messages we can till the write blocks or there are no // more outgoing messages. while (!output_queue_.empty()) { Message* msg = output_queue_.front(); #if defined(OS_LINUX) scoped_ptr hello; if (remote_fd_pipe_ != -1 && msg->routing_id() == MSG_ROUTING_NONE && msg->type() == HELLO_MESSAGE_TYPE) { hello.reset(new Message(MSG_ROUTING_NONE, HELLO_MESSAGE_TYPE, IPC::Message::PRIORITY_NORMAL)); void* iter = NULL; int pid; if (!msg->ReadInt(&iter, &pid) || !hello->WriteInt(pid)) { NOTREACHED(); } DCHECK_EQ(hello->size(), msg->size()); if (!hello->WriteFileDescriptor(base::FileDescriptor(remote_fd_pipe_, false))) { NOTREACHED(); } msg = hello.get(); DCHECK_EQ(msg->file_descriptor_set()->size(), 1); } #endif size_t amt_to_write = msg->size() - message_send_bytes_written_; DCHECK(amt_to_write != 0); const char* out_bytes = reinterpret_cast(msg->data()) + message_send_bytes_written_; struct msghdr msgh = {0}; struct iovec iov = {const_cast(out_bytes), amt_to_write}; msgh.msg_iov = &iov; msgh.msg_iovlen = 1; char buf[CMSG_SPACE( sizeof(int[FileDescriptorSet::MAX_DESCRIPTORS_PER_MESSAGE]))]; ssize_t bytes_written = 1; int fd_written = -1; if (message_send_bytes_written_ == 0 && !msg->file_descriptor_set()->empty()) { // This is the first chunk of a message which has descriptors to send struct cmsghdr *cmsg; const unsigned num_fds = msg->file_descriptor_set()->size(); DCHECK_LE(num_fds, FileDescriptorSet::MAX_DESCRIPTORS_PER_MESSAGE); msgh.msg_control = buf; msgh.msg_controllen = CMSG_SPACE(sizeof(int) * num_fds); cmsg = CMSG_FIRSTHDR(&msgh); cmsg->cmsg_level = SOL_SOCKET; cmsg->cmsg_type = SCM_RIGHTS; cmsg->cmsg_len = CMSG_LEN(sizeof(int) * num_fds); msg->file_descriptor_set()->GetDescriptors( reinterpret_cast(CMSG_DATA(cmsg))); msgh.msg_controllen = cmsg->cmsg_len; // DCHECK_LE above already checks that // num_fds < MAX_DESCRIPTORS_PER_MESSAGE so no danger of overflow. msg->header()->num_fds = static_cast(num_fds); #if defined(OS_LINUX) if (!uses_fifo_ && (msg->routing_id() != MSG_ROUTING_NONE || msg->type() != HELLO_MESSAGE_TYPE)) { // Only the Hello message sends the file descriptor with the message. // Subsequently, we can send file descriptors on the dedicated // fd_pipe_ which makes Seccomp sandbox operation more efficient. struct iovec fd_pipe_iov = { const_cast(""), 1 }; msgh.msg_iov = &fd_pipe_iov; fd_written = fd_pipe_; bytes_written = HANDLE_EINTR(sendmsg(fd_pipe_, &msgh, MSG_DONTWAIT)); msgh.msg_iov = &iov; msgh.msg_controllen = 0; if (bytes_written > 0) { msg->file_descriptor_set()->CommitAll(); } } #endif } if (bytes_written == 1) { fd_written = pipe_; #if defined(OS_LINUX) if (mode_ != MODE_SERVER && !uses_fifo_ && msg->routing_id() == MSG_ROUTING_NONE && msg->type() == HELLO_MESSAGE_TYPE) { DCHECK_EQ(msg->file_descriptor_set()->size(), 1); } if (!uses_fifo_ && !msgh.msg_controllen) { bytes_written = HANDLE_EINTR(write(pipe_, out_bytes, amt_to_write)); } else #endif { bytes_written = HANDLE_EINTR(sendmsg(pipe_, &msgh, MSG_DONTWAIT)); } } if (bytes_written > 0) msg->file_descriptor_set()->CommitAll(); if (bytes_written < 0 && !SocketWriteErrorIsRecoverable()) { #if defined(OS_MACOSX) // On OSX writing to a pipe with no listener returns EPERM. if (errno == EPERM) { Close(); return false; } #endif // OS_MACOSX if (errno == EPIPE) { Close(); return false; } PLOG(ERROR) << "pipe error on " << fd_written << " Currently writing message of size:" << msg->size(); return false; } if (static_cast(bytes_written) != amt_to_write) { if (bytes_written > 0) { // If write() fails with EAGAIN then bytes_written will be -1. message_send_bytes_written_ += bytes_written; } // Tell libevent to call us back once things are unblocked. is_blocked_on_write_ = true; MessageLoopForIO::current()->WatchFileDescriptor( pipe_, false, // One shot MessageLoopForIO::WATCH_WRITE, &write_watcher_, this); return true; } else { message_send_bytes_written_ = 0; // Message sent OK! #ifdef IPC_MESSAGE_DEBUG_EXTRA DLOG(INFO) << "sent message @" << msg << " on channel @" << this << " with type " << msg->type(); #endif delete output_queue_.front(); output_queue_.pop(); } } return true; } bool Channel::ChannelImpl::Send(Message* message) { #ifdef IPC_MESSAGE_DEBUG_EXTRA DLOG(INFO) << "sending message @" << message << " on channel @" << this << " with type " << message->type() << " (" << output_queue_.size() << " in queue)"; #endif #ifdef IPC_MESSAGE_LOG_ENABLED Logging::current()->OnSendMessage(message, ""); #endif output_queue_.push(message); if (!waiting_connect_) { if (!is_blocked_on_write_) { if (!ProcessOutgoingMessages()) return false; } } return true; } int Channel::ChannelImpl::GetClientFileDescriptor() const { return client_pipe_; } // Called by libevent when we can read from th pipe without blocking. void Channel::ChannelImpl::OnFileCanReadWithoutBlocking(int fd) { bool send_server_hello_msg = false; if (waiting_connect_ && mode_ == MODE_SERVER) { if (uses_fifo_) { if (!ServerAcceptFifoConnection(server_listen_pipe_, &pipe_)) { Close(); } // No need to watch the listening socket any longer since only one client // can connect. So unregister with libevent. server_listen_connection_watcher_.StopWatchingFileDescriptor(); // Start watching our end of the socket. MessageLoopForIO::current()->WatchFileDescriptor( pipe_, true, MessageLoopForIO::WATCH_READ, &read_watcher_, this); waiting_connect_ = false; } else { // In the case of a socketpair() the server starts listening on its end // of the pipe in Connect(). waiting_connect_ = false; } send_server_hello_msg = true; } if (!waiting_connect_ && fd == pipe_) { if (!ProcessIncomingMessages()) { Close(); listener_->OnChannelError(); // The OnChannelError() call may delete this, so we need to exit now. return; } } // If we're a server and handshaking, then we want to make sure that we // only send our handshake message after we've processed the client's. // This gives us a chance to kill the client if the incoming handshake // is invalid. if (send_server_hello_msg) { ProcessOutgoingMessages(); } } // Called by libevent when we can write to the pipe without blocking. void Channel::ChannelImpl::OnFileCanWriteWithoutBlocking(int fd) { if (!ProcessOutgoingMessages()) { Close(); listener_->OnChannelError(); } } void Channel::ChannelImpl::Close() { // Close can be called multiple time, so we need to make sure we're // idempotent. // Unregister libevent for the listening socket and close it. server_listen_connection_watcher_.StopWatchingFileDescriptor(); if (server_listen_pipe_ != -1) { HANDLE_EINTR(close(server_listen_pipe_)); server_listen_pipe_ = -1; } // Unregister libevent for the FIFO and close it. read_watcher_.StopWatchingFileDescriptor(); write_watcher_.StopWatchingFileDescriptor(); if (pipe_ != -1) { HANDLE_EINTR(close(pipe_)); pipe_ = -1; } if (client_pipe_ != -1) { Singleton()->RemoveAndClose(pipe_name_); client_pipe_ = -1; } #if defined(OS_LINUX) if (fd_pipe_ != -1) { HANDLE_EINTR(close(fd_pipe_)); fd_pipe_ = -1; } if (remote_fd_pipe_ != -1) { HANDLE_EINTR(close(remote_fd_pipe_)); remote_fd_pipe_ = -1; } #endif if (uses_fifo_) { // Unlink the FIFO unlink(pipe_name_.c_str()); } while (!output_queue_.empty()) { Message* m = output_queue_.front(); output_queue_.pop(); delete m; } // Close any outstanding, received file descriptors for (std::vector::iterator i = input_overflow_fds_.begin(); i != input_overflow_fds_.end(); ++i) { HANDLE_EINTR(close(*i)); } input_overflow_fds_.clear(); } //------------------------------------------------------------------------------ // Channel's methods simply call through to ChannelImpl. Channel::Channel(const std::string& channel_id, Mode mode, Listener* listener) : channel_impl_(new ChannelImpl(channel_id, mode, listener)) { } Channel::~Channel() { delete channel_impl_; } bool Channel::Connect() { return channel_impl_->Connect(); } void Channel::Close() { channel_impl_->Close(); } void Channel::set_listener(Listener* listener) { channel_impl_->set_listener(listener); } bool Channel::Send(Message* message) { return channel_impl_->Send(message); } int Channel::GetClientFileDescriptor() const { return channel_impl_->GetClientFileDescriptor(); } } // namespace IPC