// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Defining IPC Messages // // Your IPC messages will be defined by macros inside of an XXX_messages.h // header file. Most of the time, the system can automatically generate all // of messaging mechanism from these definitions, but sometimes some manual // coding is required. In these cases, you will also have an XXX_messages.cc // implemation file as well. // // The senders of your messages will include your XXX_messages.h file to // get the full set of definitions they need to send your messages. // // Each XXX_messages.h file must be registered with the IPC system. This // requires adding two things: // - An XXXMsgStart value to the IPCMessageStart enum in ipc_message_utils.h // - An inclusion of XXX_messages.h file in a message generator .h file // // The XXXMsgStart value is an enumeration that ensures uniqueness for // each different message file. Later, you will use this inside your // XXX_messages.h file before invoking message declaration macros: // #define IPC_MESSAGE_START XXXMsgStart // ( ... your macro invocations go here ... ) // // Message Generator Files // // A message generator .h header file pulls in all other message-declaring // headers for a given component. It is included by a message generator // .cc file, which is where all the generated code will wind up. Typically, // you will use an existing generator (e.g. common_message_generator.cc // in /chrome/common), but there are circumstances where you may add a // new one. // // In the rare cicrucmstances where you can't re-use an existing file, // your YYY_message_generator.cc file for a component YYY would contain // the following code: // // Get basic type definitions. // #define IPC_MESSAGE_IMPL // #include "path/to/YYY_message_generator.h" // // Generate constructors. // #include "ipc/struct_constructor_macros.h" // #include "path/to/YYY_message_generator.h" // // Generate destructors. // #include "ipc/struct_destructor_macros.h" // #include "path/to/YYY_message_generator.h" // // Generate param traits write methods. // #include "ipc/param_traits_write_macros.h" // namespace IPC { // #include "path/to/YYY_message_generator.h" // } // namespace IPC // // Generate param traits read methods. // #include "ipc/param_traits_read_macros.h" // namespace IPC { // #include "path/to/YYY_message_generator.h" // } // namespace IPC // // Generate param traits log methods. // #include "ipc/param_traits_log_macros.h" // namespace IPC { // #include "path/to/YYY_message_generator.h" // } // namespace IPC // // In cases where manual generation is required, in your XXX_messages.cc // file, put the following after all the includes for param types: // #define IPC_MESSAGE_IMPL // #include "XXX_messages.h" // (... implementation of traits not auto-generated ...) // // Multiple Inclusion // // The XXX_messages.h file will be multiply-included by the // YYY_message_generator.cc file, so your XXX_messages file can't be // guarded in the usual manner. Ideally, there will be no need for any // inclusion guard, since the XXX_messages.h file should consist soley // of inclusions of other headers (which are self-guarding) and IPC // macros (which are multiply evaluating). // // Note that there is no #pragma once either; doing so would mark the whole // file as being singly-included. Since your XXX_messages.h file is only // partially-guarded, care must be taken to ensure that it is only included // by other .cc files (and the YYY_message_generator.h file). Including an // XXX_messages.h file in some other .h file may result in duplicate // declarations and a compilation failure. // // Type Declarations // // It is generally a bad idea to have type definitions in a XXX_messages.h // file; most likely the typedef will then be used in the message, as opposed // to the struct iself. Later, an IPC message dispatcher wil need to call // a function taking that type, and that function is declared in some other // header. Thus, in order to get the type definition, the other header // would have to include the XXX_messages.h file, violating the rule above // about not including XXX_messages.h file in other .h files. // // One approach here is to move these type definitions to another (guarded) // .h file and include this second .h in your XXX_messages.h file. This // is still less than ideal, because the dispatched function would have to // redeclare the typedef or include this second header. This may be // reasonable in a few cases. // // Failing all of the above, then you will want to bracket the smallest // possible section of your XXX_messages.h file containing these types // with an include guard macro. Be aware that providing an incomplete // class type declaration to avoid pulling in a long chain of headers is // acceptable when your XXX_messages.h header is being included by the // message sending caller's code, but not when the YYY_message_generator.c // is building the messages. In addtion, due to the multiple inclusion // restriction, these type ought to be guarded. Follow a convention like: // #ifndef SOME_GUARD_MACRO // #define SOME_GUARD_MACRO // class some_class; // One incomplete class declaration // class_some_other_class; // Another incomplete class declaration // #endif // SOME_GUARD_MACRO // #ifdef IPC_MESSAGE_IMPL // #inlcude "path/to/some_class.h" // Full class declaration // #inlcude "path/to/some_other_class.h" // Full class declaration // #endif // IPC_MESSAGE_IMPL // (.. IPC macros using some_class and some_other_class ...) // // Macro Invocations // // You will use IPC message macro invocations for three things: // - New struct definitions for IPC // - Registering existing struct and enum definitions with IPC // - Defining the messages themselves // // New structs are defined with IPC_STRUCT_BEGIN(), IPC_STRUCT_MEMBER(), // IPC_STRUCT_END() family of macros. These cause the XXX_messages.h // to proclaim equivalent struct declarations for use by callers, as well // as later registering the type with the message generation. Note that // IPC_STRUCT_MEMBER() is only permitted inside matching calls to // IPC_STRUCT_BEGIN() / IPC_STRUCT_END(). // // Externally-defined structs are registered with IPC_STRUCT_TRAITS_BEGIN(), // IPC_STRUCT_TRAITS_MEMBER(), and IPC_STRUCT_TRAITS_END() macros. These // cause registration of the types with message generation only. // There's also IPC_STRUCT_TRAITS_PARENT, which is used to register a parent // class (whose own traits are already defined). Note that // IPC_STRUCT_TRAITS_MEMBER() and IPC_STRUCT_TRAITS_PARENT are only permitted // inside matching calls to IPC_STRUCT_TRAITS_BEGIN() / // IPC_STRUCT_TRAITS_END(). // // Enum types are registered with a single IPC_ENUM_TRAITS() macro. There // is no need to enumerate each value to the IPC mechanism. // // Do not place semicolons following these IPC_ macro invocations. There // is no reason to expect that their expansion corresponds one-to-one with // C++ statements. // // Once the types have been declared / registered, message definitions follow. // "Sync" messages are just synchronous calls, the Send() call doesn't return // until a reply comes back. To declare a sync message, use the IPC_SYNC_ // macros. The numbers at the end show how many input/output parameters there // are (i.e. 1_2 is 1 in, 2 out). Input parameters are first, followed by // output parameters. The caller uses Send([route id, ], in1, &out1, &out2). // The receiver's handler function will be // void OnSyncMessageName(const type1& in1, type2* out1, type3* out2) // // A caller can also send a synchronous message, while the receiver can respond // at a later time. This is transparent from the sender's side. The receiver // needs to use a different handler that takes in a IPC::Message* as the output // type, stash the message, and when it has the data it can Send the message. // // Use the IPC_MESSAGE_HANDLER_DELAY_REPLY macro instead of IPC_MESSAGE_HANDLER // IPC_MESSAGE_HANDLER_DELAY_REPLY(ViewHostMsg_SyncMessageName, // OnSyncMessageName) // // The handler function will look like: // void OnSyncMessageName(const type1& in1, IPC::Message* reply_msg); // // Receiver stashes the IPC::Message* pointer, and when it's ready, it does: // ViewHostMsg_SyncMessageName::WriteReplyParams(reply_msg, out1, out2); // Send(reply_msg); // Files that want to export their ipc messages should do // #undef IPC_MESSAGE_EXPORT // #define IPC_MESSAGE_EXPORT VISIBILITY_MACRO // after including this header, but before using any of the macros below. // (This needs to be before the include guard.) #undef IPC_MESSAGE_EXPORT #define IPC_MESSAGE_EXPORT #ifndef IPC_IPC_MESSAGE_MACROS_H_ #define IPC_IPC_MESSAGE_MACROS_H_ #include "base/profiler/scoped_profile.h" #include "ipc/ipc_message_utils.h" #include "ipc/param_traits_macros.h" #if defined(IPC_MESSAGE_IMPL) #include "ipc/ipc_message_utils_impl.h" #endif // Macros for defining structs. May be subsequently redefined. #define IPC_STRUCT_BEGIN(struct_name) \ IPC_STRUCT_BEGIN_WITH_PARENT(struct_name, IPC::NoParams) #define IPC_STRUCT_BEGIN_WITH_PARENT(struct_name, parent) \ struct struct_name; \ IPC_STRUCT_TRAITS_BEGIN(struct_name) \ IPC_STRUCT_TRAITS_END() \ struct IPC_MESSAGE_EXPORT struct_name : parent { \ struct_name(); \ ~struct_name(); // Optional variadic parameters specify the default value for this struct // member. They are passed through to the constructor for |type|. #define IPC_STRUCT_MEMBER(type, name, ...) type name; #define IPC_STRUCT_END() }; // Message macros collect specific numbers of arguments and funnel them into // the common message generation macro. These should never be redefined. #define IPC_MESSAGE_CONTROL0(msg_class) \ IPC_MESSAGE_DECL(EMPTY, CONTROL, msg_class, 0, 0, (), ()) #define IPC_MESSAGE_CONTROL1(msg_class, type1) \ IPC_MESSAGE_DECL(ASYNC, CONTROL, msg_class, 1, 0, (type1), ()) #define IPC_MESSAGE_CONTROL2(msg_class, type1, type2) \ IPC_MESSAGE_DECL(ASYNC, CONTROL, msg_class, 2, 0, (type1, type2), ()) #define IPC_MESSAGE_CONTROL3(msg_class, type1, type2, type3) \ IPC_MESSAGE_DECL(ASYNC, CONTROL, msg_class, 3, 0, (type1, type2, type3), ()) #define IPC_MESSAGE_CONTROL4(msg_class, type1, type2, type3, type4) \ IPC_MESSAGE_DECL(ASYNC, CONTROL, msg_class, 4, 0, (type1, type2, type3, type4), ()) #define IPC_MESSAGE_CONTROL5(msg_class, type1, type2, type3, type4, type5) \ IPC_MESSAGE_DECL(ASYNC, CONTROL, msg_class, 5, 0, (type1, type2, type3, type4, type5), ()) #define IPC_MESSAGE_ROUTED0(msg_class) \ IPC_MESSAGE_DECL(EMPTY, ROUTED, msg_class, 0, 0, (), ()) #define IPC_MESSAGE_ROUTED1(msg_class, type1) \ IPC_MESSAGE_DECL(ASYNC, ROUTED, msg_class, 1, 0, (type1), ()) #define IPC_MESSAGE_ROUTED2(msg_class, type1, type2) \ IPC_MESSAGE_DECL(ASYNC, ROUTED, msg_class, 2, 0, (type1, type2), ()) #define IPC_MESSAGE_ROUTED3(msg_class, type1, type2, type3) \ IPC_MESSAGE_DECL(ASYNC, ROUTED, msg_class, 3, 0, (type1, type2, type3), ()) #define IPC_MESSAGE_ROUTED4(msg_class, type1, type2, type3, type4) \ IPC_MESSAGE_DECL(ASYNC, ROUTED, msg_class, 4, 0, (type1, type2, type3, type4), ()) #define IPC_MESSAGE_ROUTED5(msg_class, type1, type2, type3, type4, type5) \ IPC_MESSAGE_DECL(ASYNC, ROUTED, msg_class, 5, 0, (type1, type2, type3, type4, type5), ()) #define IPC_SYNC_MESSAGE_CONTROL0_0(msg_class) \ IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 0, 0, (), ()) #define IPC_SYNC_MESSAGE_CONTROL0_1(msg_class, type1_out) \ IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 0, 1, (), (type1_out)) #define IPC_SYNC_MESSAGE_CONTROL0_2(msg_class, type1_out, type2_out) \ IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 0, 2, (), (type1_out, type2_out)) #define IPC_SYNC_MESSAGE_CONTROL0_3(msg_class, type1_out, type2_out, type3_out) \ IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 0, 3, (), (type1_out, type2_out, type3_out)) #define IPC_SYNC_MESSAGE_CONTROL0_4(msg_class, type1_out, type2_out, type3_out, type4_out) \ IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 0, 4, (), (type1_out, type2_out, type3_out, type4_out)) #define IPC_SYNC_MESSAGE_CONTROL1_0(msg_class, type1_in) \ IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 1, 0, (type1_in), ()) #define IPC_SYNC_MESSAGE_CONTROL1_1(msg_class, type1_in, type1_out) \ IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 1, 1, (type1_in), (type1_out)) #define IPC_SYNC_MESSAGE_CONTROL1_2(msg_class, type1_in, type1_out, type2_out) \ IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 1, 2, (type1_in), (type1_out, type2_out)) #define IPC_SYNC_MESSAGE_CONTROL1_3(msg_class, type1_in, type1_out, type2_out, type3_out) \ IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 1, 3, (type1_in), (type1_out, type2_out, type3_out)) #define IPC_SYNC_MESSAGE_CONTROL1_4(msg_class, type1_in, type1_out, type2_out, type3_out, type4_out) \ IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 1, 4, (type1_in), (type1_out, type2_out, type3_out, type4_out)) #define IPC_SYNC_MESSAGE_CONTROL2_0(msg_class, type1_in, type2_in) \ IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 2, 0, (type1_in, type2_in), ()) #define IPC_SYNC_MESSAGE_CONTROL2_1(msg_class, type1_in, type2_in, type1_out) \ IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 2, 1, (type1_in, type2_in), (type1_out)) #define IPC_SYNC_MESSAGE_CONTROL2_2(msg_class, type1_in, type2_in, type1_out, type2_out) \ IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 2, 2, (type1_in, type2_in), (type1_out, type2_out)) #define IPC_SYNC_MESSAGE_CONTROL2_3(msg_class, type1_in, type2_in, type1_out, type2_out, type3_out) \ IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 2, 3, (type1_in, type2_in), (type1_out, type2_out, type3_out)) #define IPC_SYNC_MESSAGE_CONTROL2_4(msg_class, type1_in, type2_in, type1_out, type2_out, type3_out, type4_out) \ IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 2, 4, (type1_in, type2_in), (type1_out, type2_out, type3_out, type4_out)) #define IPC_SYNC_MESSAGE_CONTROL3_0(msg_class, type1_in, type2_in, type3_in) \ IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 3, 0, (type1_in, type2_in, type3_in), ()) #define IPC_SYNC_MESSAGE_CONTROL3_1(msg_class, type1_in, type2_in, type3_in, type1_out) \ IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 3, 1, (type1_in, type2_in, type3_in), (type1_out)) #define IPC_SYNC_MESSAGE_CONTROL3_2(msg_class, type1_in, type2_in, type3_in, type1_out, type2_out) \ IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 3, 2, (type1_in, type2_in, type3_in), (type1_out, type2_out)) #define IPC_SYNC_MESSAGE_CONTROL3_3(msg_class, type1_in, type2_in, type3_in, type1_out, type2_out, type3_out) \ IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 3, 3, (type1_in, type2_in, type3_in), (type1_out, type2_out, type3_out)) #define IPC_SYNC_MESSAGE_CONTROL3_4(msg_class, type1_in, type2_in, type3_in, type1_out, type2_out, type3_out, type4_out) \ IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 3, 4, (type1_in, type2_in, type3_in), (type1_out, type2_out, type3_out, type4_out)) #define IPC_SYNC_MESSAGE_CONTROL4_0(msg_class, type1_in, type2_in, type3_in, type4_in) \ IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 4, 0, (type1_in, type2_in, type3_in, type4_in), ()) #define IPC_SYNC_MESSAGE_CONTROL4_1(msg_class, type1_in, type2_in, type3_in, type4_in, type1_out) \ IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 4, 1, (type1_in, type2_in, type3_in, type4_in), (type1_out)) #define IPC_SYNC_MESSAGE_CONTROL4_2(msg_class, type1_in, type2_in, type3_in, type4_in, type1_out, type2_out) \ IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 4, 2, (type1_in, type2_in, type3_in, type4_in), (type1_out, type2_out)) #define IPC_SYNC_MESSAGE_CONTROL4_3(msg_class, type1_in, type2_in, type3_in, type4_in, type1_out, type2_out, type3_out) \ IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 4, 3, (type1_in, type2_in, type3_in, type4_in), (type1_out, type2_out, type3_out)) #define IPC_SYNC_MESSAGE_CONTROL4_4(msg_class, type1_in, type2_in, type3_in, type4_in, type1_out, type2_out, type3_out, type4_out) \ IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 4, 4, (type1_in, type2_in, type3_in, type4_in), (type1_out, type2_out, type3_out, type4_out)) #define IPC_SYNC_MESSAGE_CONTROL5_0(msg_class, type1_in, type2_in, type3_in, type4_in, type5_in) \ IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 5, 0, (type1_in, type2_in, type3_in, type4_in, type5_in), ()) #define IPC_SYNC_MESSAGE_CONTROL5_1(msg_class, type1_in, type2_in, type3_in, type4_in, type5_in, type1_out) \ IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 5, 1, (type1_in, type2_in, type3_in, type4_in, type5_in), (type1_out)) #define IPC_SYNC_MESSAGE_CONTROL5_2(msg_class, type1_in, type2_in, type3_in, type4_in, type5_in, type1_out, type2_out) \ IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 5, 2, (type1_in, type2_in, type3_in, type4_in, type5_in), (type1_out, type2_out)) #define IPC_SYNC_MESSAGE_CONTROL5_3(msg_class, type1_in, type2_in, type3_in, type4_in, type5_in, type1_out, type2_out, type3_out) \ IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 5, 3, (type1_in, type2_in, type3_in, type4_in, type5_in), (type1_out, type2_out, type3_out)) #define IPC_SYNC_MESSAGE_CONTROL5_4(msg_class, type1_in, type2_in, type3_in, type4_in, type5_in, type1_out, type2_out, type3_out, type4_out) \ IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 5, 4, (type1_in, type2_in, type3_in, type4_in, type5_in), (type1_out, type2_out, type3_out, type4_out)) #define IPC_SYNC_MESSAGE_ROUTED0_0(msg_class) \ IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 0, 0, (), ()) #define IPC_SYNC_MESSAGE_ROUTED0_1(msg_class, type1_out) \ IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 0, 1, (), (type1_out)) #define IPC_SYNC_MESSAGE_ROUTED0_2(msg_class, type1_out, type2_out) \ IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 0, 2, (), (type1_out, type2_out)) #define IPC_SYNC_MESSAGE_ROUTED0_3(msg_class, type1_out, type2_out, type3_out) \ IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 0, 3, (), (type1_out, type2_out, type3_out)) #define IPC_SYNC_MESSAGE_ROUTED0_4(msg_class, type1_out, type2_out, type3_out, type4_out) \ IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 0, 4, (), (type1_out, type2_out, type3_out, type4_out)) #define IPC_SYNC_MESSAGE_ROUTED1_0(msg_class, type1_in) \ IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 1, 0, (type1_in), ()) #define IPC_SYNC_MESSAGE_ROUTED1_1(msg_class, type1_in, type1_out) \ IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 1, 1, (type1_in), (type1_out)) #define IPC_SYNC_MESSAGE_ROUTED1_2(msg_class, type1_in, type1_out, type2_out) \ IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 1, 2, (type1_in), (type1_out, type2_out)) #define IPC_SYNC_MESSAGE_ROUTED1_3(msg_class, type1_in, type1_out, type2_out, type3_out) \ IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 1, 3, (type1_in), (type1_out, type2_out, type3_out)) #define IPC_SYNC_MESSAGE_ROUTED1_4(msg_class, type1_in, type1_out, type2_out, type3_out, type4_out) \ IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 1, 4, (type1_in), (type1_out, type2_out, type3_out, type4_out)) #define IPC_SYNC_MESSAGE_ROUTED2_0(msg_class, type1_in, type2_in) \ IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 2, 0, (type1_in, type2_in), ()) #define IPC_SYNC_MESSAGE_ROUTED2_1(msg_class, type1_in, type2_in, type1_out) \ IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 2, 1, (type1_in, type2_in), (type1_out)) #define IPC_SYNC_MESSAGE_ROUTED2_2(msg_class, type1_in, type2_in, type1_out, type2_out) \ IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 2, 2, (type1_in, type2_in), (type1_out, type2_out)) #define IPC_SYNC_MESSAGE_ROUTED2_3(msg_class, type1_in, type2_in, type1_out, type2_out, type3_out) \ IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 2, 3, (type1_in, type2_in), (type1_out, type2_out, type3_out)) #define IPC_SYNC_MESSAGE_ROUTED2_4(msg_class, type1_in, type2_in, type1_out, type2_out, type3_out, type4_out) \ IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 2, 4, (type1_in, type2_in), (type1_out, type2_out, type3_out, type4_out)) #define IPC_SYNC_MESSAGE_ROUTED3_0(msg_class, type1_in, type2_in, type3_in) \ IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 3, 0, (type1_in, type2_in, type3_in), ()) #define IPC_SYNC_MESSAGE_ROUTED3_1(msg_class, type1_in, type2_in, type3_in, type1_out) \ IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 3, 1, (type1_in, type2_in, type3_in), (type1_out)) #define IPC_SYNC_MESSAGE_ROUTED3_2(msg_class, type1_in, type2_in, type3_in, type1_out, type2_out) \ IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 3, 2, (type1_in, type2_in, type3_in), (type1_out, type2_out)) #define IPC_SYNC_MESSAGE_ROUTED3_3(msg_class, type1_in, type2_in, type3_in, type1_out, type2_out, type3_out) \ IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 3, 3, (type1_in, type2_in, type3_in), (type1_out, type2_out, type3_out)) #define IPC_SYNC_MESSAGE_ROUTED3_4(msg_class, type1_in, type2_in, type3_in, type1_out, type2_out, type3_out, type4_out) \ IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 3, 4, (type1_in, type2_in, type3_in), (type1_out, type2_out, type3_out, type4_out)) #define IPC_SYNC_MESSAGE_ROUTED4_0(msg_class, type1_in, type2_in, type3_in, type4_in) \ IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 4, 1, (type1_in, type2_in, type3_in, type4_in), ()) #define IPC_SYNC_MESSAGE_ROUTED4_1(msg_class, type1_in, type2_in, type3_in, type4_in, type1_out) \ IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 4, 1, (type1_in, type2_in, type3_in, type4_in), (type1_out)) #define IPC_SYNC_MESSAGE_ROUTED4_2(msg_class, type1_in, type2_in, type3_in, type4_in, type1_out, type2_out) \ IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 4, 2, (type1_in, type2_in, type3_in, type4_in), (type1_out, type2_out)) #define IPC_SYNC_MESSAGE_ROUTED4_3(msg_class, type1_in, type2_in, type3_in, type4_in, type1_out, type2_out, type3_out) \ IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 4, 3, (type1_in, type2_in, type3_in, type4_in), (type1_out, type2_out, type3_out)) #define IPC_SYNC_MESSAGE_ROUTED4_4(msg_class, type1_in, type2_in, type3_in, type4_in, type1_out, type2_out, type3_out, type4_out) \ IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 4, 4, (type1_in, type2_in, type3_in, type4_in), (type1_out, type2_out, type3_out, type4_out)) #define IPC_SYNC_MESSAGE_ROUTED5_0(msg_class, type1_in, type2_in, type3_in, type4_in, type5_in) \ IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 5, 1, (type1_in, type2_in, type3_in, type4_in, type5_in), ()) #define IPC_SYNC_MESSAGE_ROUTED5_1(msg_class, type1_in, type2_in, type3_in, type4_in, type5_in, type1_out) \ IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 5, 1, (type1_in, type2_in, type3_in, type4_in, type5_in), (type1_out)) #define IPC_SYNC_MESSAGE_ROUTED5_2(msg_class, type1_in, type2_in, type3_in, type4_in, type5_in, type1_out, type2_out) \ IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 5, 2, (type1_in, type2_in, type3_in, type4_in, type5_in), (type1_out, type2_out)) #define IPC_SYNC_MESSAGE_ROUTED5_3(msg_class, type1_in, type2_in, type3_in, type4_in, type5_in, type1_out, type2_out, type3_out) \ IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 5, 3, (type1_in, type2_in, type3_in, type4_in, type5_in), (type1_out, type2_out, type3_out)) #define IPC_SYNC_MESSAGE_ROUTED5_4(msg_class, type1_in, type2_in, type3_in, type4_in, type5_in, type1_out, type2_out, type3_out, type4_out) \ IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 5, 4, (type1_in, type2_in, type3_in, type4_in, type5_in), (type1_out, type2_out, type3_out, type4_out)) // The following macros define the common set of methods provided by ASYNC // message classes. #define IPC_ASYNC_MESSAGE_METHODS_GENERIC \ template \ static bool Dispatch(const Message* msg, T* obj, S* sender, Method func) { \ Schema::Param p; \ if (Read(msg, &p)) { \ DispatchToMethod(obj, func, p); \ return true; \ } \ return false; \ } #define IPC_ASYNC_MESSAGE_METHODS_1 \ IPC_ASYNC_MESSAGE_METHODS_GENERIC \ template \ static bool Dispatch(const Message* msg, T* obj, S* sender, \ void (T::*func)(const Message&, TA)) { \ Schema::Param p; \ if (Read(msg, &p)) { \ (obj->*func)(*msg, p.a); \ return true; \ } \ return false; \ } #define IPC_ASYNC_MESSAGE_METHODS_2 \ IPC_ASYNC_MESSAGE_METHODS_GENERIC \ template \ static bool Dispatch(const Message* msg, T* obj, S* sender, \ void (T::*func)(const Message&, TA, TB)) { \ Schema::Param p; \ if (Read(msg, &p)) { \ (obj->*func)(*msg, p.a, p.b); \ return true; \ } \ return false; \ } \ template \ static bool Read(const IPC::Message* msg, TA* a, TB* b) { \ Schema::Param p; \ if (!Read(msg, &p)) \ return false; \ *a = p.a; \ *b = p.b; \ return true; \ } #define IPC_ASYNC_MESSAGE_METHODS_3 \ IPC_ASYNC_MESSAGE_METHODS_GENERIC \ template \ static bool Dispatch(const Message* msg, T* obj, S* sender, \ void (T::*func)(const Message&, TA, TB, TC)) { \ Schema::Param p; \ if (Read(msg, &p)) { \ (obj->*func)(*msg, p.a, p.b, p.c); \ return true; \ } \ return false; \ } \ template \ static bool Read(const IPC::Message* msg, TA* a, TB* b, TC* c) { \ Schema::Param p; \ if (!Read(msg, &p)) \ return false; \ *a = p.a; \ *b = p.b; \ *c = p.c; \ return true; \ } #define IPC_ASYNC_MESSAGE_METHODS_4 \ IPC_ASYNC_MESSAGE_METHODS_GENERIC \ template \ static bool Dispatch(const Message* msg, T* obj, S* sender, \ void (T::*func)(const Message&, TA, TB, TC, TD)) { \ Schema::Param p; \ if (Read(msg, &p)) { \ (obj->*func)(*msg, p.a, p.b, p.c, p.d); \ return true; \ } \ return false; \ } \ template \ static bool Read(const IPC::Message* msg, TA* a, TB* b, TC* c, TD* d) { \ Schema::Param p; \ if (!Read(msg, &p)) \ return false; \ *a = p.a; \ *b = p.b; \ *c = p.c; \ *d = p.d; \ return true; \ } #define IPC_ASYNC_MESSAGE_METHODS_5 \ IPC_ASYNC_MESSAGE_METHODS_GENERIC \ template \ static bool Dispatch(const Message* msg, T* obj, S* sender, \ void (T::*func)(const Message&, TA, TB, TC, TD, TE)) { \ Schema::Param p; \ if (Read(msg, &p)) { \ (obj->*func)(*msg, p.a, p.b, p.c, p.d, p.e); \ return true; \ } \ return false; \ } \ template \ static bool Read(const IPC::Message* msg, TA* a, TB* b, TC* c, TD* d, \ TE* e) { \ Schema::Param p; \ if (!Read(msg, &p)) \ return false; \ *a = p.a; \ *b = p.b; \ *c = p.c; \ *d = p.d; \ *e = p.e; \ return true; \ } // The following macros define the common set of methods provided by SYNC // message classes. #define IPC_SYNC_MESSAGE_METHODS_GENERIC \ template \ static bool Dispatch(const Message* msg, T* obj, S* sender, Method func) { \ Schema::SendParam send_params; \ bool ok = ReadSendParam(msg, &send_params); \ return Schema::DispatchWithSendParams(ok, send_params, msg, obj, sender, \ func); \ } \ template \ static bool DispatchDelayReply(const Message* msg, T* obj, Method func) { \ Schema::SendParam send_params; \ bool ok = ReadSendParam(msg, &send_params); \ return Schema::DispatchDelayReplyWithSendParams(ok, send_params, msg, \ obj, func); \ } #define IPC_SYNC_MESSAGE_METHODS_0 \ IPC_SYNC_MESSAGE_METHODS_GENERIC #define IPC_SYNC_MESSAGE_METHODS_1 \ IPC_SYNC_MESSAGE_METHODS_GENERIC \ template \ static void WriteReplyParams(Message* reply, TA a) { \ Schema::WriteReplyParams(reply, a); \ } #define IPC_SYNC_MESSAGE_METHODS_2 \ IPC_SYNC_MESSAGE_METHODS_GENERIC \ template \ static void WriteReplyParams(Message* reply, TA a, TB b) { \ Schema::WriteReplyParams(reply, a, b); \ } #define IPC_SYNC_MESSAGE_METHODS_3 \ IPC_SYNC_MESSAGE_METHODS_GENERIC \ template \ static void WriteReplyParams(Message* reply, TA a, TB b, TC c) { \ Schema::WriteReplyParams(reply, a, b, c); \ } #define IPC_SYNC_MESSAGE_METHODS_4 \ IPC_SYNC_MESSAGE_METHODS_GENERIC \ template \ static void WriteReplyParams(Message* reply, TA a, TB b, TC c, TD d) { \ Schema::WriteReplyParams(reply, a, b, c, d); \ } #define IPC_SYNC_MESSAGE_METHODS_5 \ IPC_SYNC_MESSAGE_METHODS_GENERIC \ template \ static void WriteReplyParams(Message* reply, TA a, TB b, TC c, TD d, TE e) { \ Schema::WriteReplyParams(reply, a, b, c, d, e); \ } // Common message macro which dispatches into one of the 6 (sync x kind) // routines. There is a way that these 6 cases can be lumped together, // but the macros get very complicated in that case. // Note: intended be redefined to generate other information. #define IPC_MESSAGE_DECL(sync, kind, msg_class, \ in_cnt, out_cnt, in_list, out_list) \ IPC_##sync##_##kind##_DECL(msg_class, in_cnt, out_cnt, in_list, out_list) \ IPC_MESSAGE_EXTRA(sync, kind, msg_class, in_cnt, out_cnt, in_list, out_list) #define IPC_EMPTY_CONTROL_DECL(msg_class, in_cnt, out_cnt, in_list, out_list) \ class IPC_MESSAGE_EXPORT msg_class : public IPC::Message { \ public: \ typedef IPC::Message Schema; \ enum { ID = IPC_MESSAGE_ID() }; \ msg_class() : IPC::Message(MSG_ROUTING_CONTROL, ID, PRIORITY_NORMAL) {} \ static void Log(std::string* name, const Message* msg, std::string* l); \ }; #define IPC_EMPTY_ROUTED_DECL(msg_class, in_cnt, out_cnt, in_list, out_list) \ class IPC_MESSAGE_EXPORT msg_class : public IPC::Message { \ public: \ typedef IPC::Message Schema; \ enum { ID = IPC_MESSAGE_ID() }; \ msg_class(int32 routing_id) \ : IPC::Message(routing_id, ID, PRIORITY_NORMAL) {} \ static void Log(std::string* name, const Message* msg, std::string* l); \ }; #define IPC_ASYNC_CONTROL_DECL(msg_class, in_cnt, out_cnt, in_list, out_list) \ class IPC_MESSAGE_EXPORT msg_class : public IPC::Message { \ public: \ typedef IPC::MessageSchema Schema; \ typedef Schema::Param Param; \ enum { ID = IPC_MESSAGE_ID() }; \ msg_class(IPC_TYPE_IN_##in_cnt in_list); \ virtual ~msg_class(); \ static bool Read(const Message* msg, Schema::Param* p); \ static void Log(std::string* name, const Message* msg, std::string* l); \ IPC_ASYNC_MESSAGE_METHODS_##in_cnt \ }; #define IPC_ASYNC_ROUTED_DECL(msg_class, in_cnt, out_cnt, in_list, out_list) \ class IPC_MESSAGE_EXPORT msg_class : public IPC::Message { \ public: \ typedef IPC::MessageSchema Schema; \ typedef Schema::Param Param; \ enum { ID = IPC_MESSAGE_ID() }; \ msg_class(int32 routing_id IPC_COMMA_##in_cnt \ IPC_TYPE_IN_##in_cnt in_list); \ virtual ~msg_class(); \ static bool Read(const Message* msg, Schema::Param* p); \ static void Log(std::string* name, const Message* msg, std::string* l); \ IPC_ASYNC_MESSAGE_METHODS_##in_cnt \ }; #define IPC_SYNC_CONTROL_DECL(msg_class, in_cnt, out_cnt, in_list, out_list) \ class IPC_MESSAGE_EXPORT msg_class : public IPC::SyncMessage { \ public: \ typedef IPC::SyncMessageSchema Schema; \ typedef Schema::ReplyParam ReplyParam; \ typedef Schema::SendParam SendParam; \ enum { ID = IPC_MESSAGE_ID() }; \ msg_class(IPC_TYPE_IN_##in_cnt in_list \ IPC_COMMA_AND_##in_cnt(IPC_COMMA_##out_cnt) \ IPC_TYPE_OUT_##out_cnt out_list); \ virtual ~msg_class(); \ static bool ReadSendParam(const Message* msg, Schema::SendParam* p); \ static bool ReadReplyParam( \ const Message* msg, \ TupleTypes::ValueTuple* p); \ static void Log(std::string* name, const Message* msg, std::string* l); \ IPC_SYNC_MESSAGE_METHODS_##out_cnt \ }; #define IPC_SYNC_ROUTED_DECL(msg_class, in_cnt, out_cnt, in_list, out_list) \ class IPC_MESSAGE_EXPORT msg_class : public IPC::SyncMessage { \ public: \ typedef IPC::SyncMessageSchema Schema; \ typedef Schema::ReplyParam ReplyParam; \ typedef Schema::SendParam SendParam; \ enum { ID = IPC_MESSAGE_ID() }; \ msg_class(int32 routing_id \ IPC_COMMA_OR_##in_cnt(IPC_COMMA_##out_cnt) \ IPC_TYPE_IN_##in_cnt in_list \ IPC_COMMA_AND_##in_cnt(IPC_COMMA_##out_cnt) \ IPC_TYPE_OUT_##out_cnt out_list); \ virtual ~msg_class(); \ static bool ReadSendParam(const Message* msg, Schema::SendParam* p); \ static bool ReadReplyParam( \ const Message* msg, \ TupleTypes::ValueTuple* p); \ static void Log(std::string* name, const Message* msg, std::string* l); \ IPC_SYNC_MESSAGE_METHODS_##out_cnt \ }; #if defined(IPC_MESSAGE_IMPL) // "Implementation" inclusion produces constructors, destructors, and // logging functions, except for the no-arg special cases, where the // implementation occurs in the declaration, and there is no special // logging function. #define IPC_MESSAGE_EXTRA(sync, kind, msg_class, \ in_cnt, out_cnt, in_list, out_list) \ IPC_##sync##_##kind##_IMPL(msg_class, in_cnt, out_cnt, in_list, out_list) \ IPC_##sync##_MESSAGE_LOG(msg_class) #define IPC_EMPTY_CONTROL_IMPL(msg_class, in_cnt, out_cnt, in_list, out_list) #define IPC_EMPTY_ROUTED_IMPL(msg_class, in_cnt, out_cnt, in_list, out_list) #define IPC_ASYNC_CONTROL_IMPL(msg_class, in_cnt, out_cnt, in_list, out_list) \ msg_class::msg_class(IPC_TYPE_IN_##in_cnt in_list) : \ IPC::Message(MSG_ROUTING_CONTROL, ID, PRIORITY_NORMAL) { \ Schema::Write(this, IPC_NAME_IN_##in_cnt in_list); \ } \ msg_class::~msg_class() {} \ bool msg_class::Read(const Message* msg, Schema::Param* p) { \ return Schema::Read(msg, p); \ } #define IPC_ASYNC_ROUTED_IMPL(msg_class, in_cnt, out_cnt, in_list, out_list) \ msg_class::msg_class(int32 routing_id IPC_COMMA_##in_cnt \ IPC_TYPE_IN_##in_cnt in_list) : \ IPC::Message(routing_id, ID, PRIORITY_NORMAL) { \ Schema::Write(this, IPC_NAME_IN_##in_cnt in_list); \ } \ msg_class::~msg_class() {} \ bool msg_class::Read(const Message* msg, Schema::Param* p) { \ return Schema::Read(msg, p); \ } #define IPC_SYNC_CONTROL_IMPL(msg_class, in_cnt, out_cnt, in_list, out_list) \ msg_class::msg_class(IPC_TYPE_IN_##in_cnt in_list \ IPC_COMMA_AND_##in_cnt(IPC_COMMA_##out_cnt) \ IPC_TYPE_OUT_##out_cnt out_list) : \ IPC::SyncMessage(MSG_ROUTING_CONTROL, ID, PRIORITY_NORMAL, \ new IPC::ParamDeserializer( \ IPC_NAME_OUT_##out_cnt out_list)) { \ Schema::Write(this, IPC_NAME_IN_##in_cnt in_list); \ } \ msg_class::~msg_class() {} \ bool msg_class::ReadSendParam(const Message* msg, Schema::SendParam* p) { \ return Schema::ReadSendParam(msg, p); \ } \ bool msg_class::ReadReplyParam(const Message* msg, \ TupleTypes::ValueTuple* p) { \ return Schema::ReadReplyParam(msg, p); \ } #define IPC_SYNC_ROUTED_IMPL(msg_class, in_cnt, out_cnt, in_list, out_list) \ msg_class::msg_class(int32 routing_id \ IPC_COMMA_OR_##in_cnt(IPC_COMMA_##out_cnt) \ IPC_TYPE_IN_##in_cnt in_list \ IPC_COMMA_AND_##in_cnt(IPC_COMMA_##out_cnt) \ IPC_TYPE_OUT_##out_cnt out_list) : \ IPC::SyncMessage(routing_id, ID, PRIORITY_NORMAL, \ new IPC::ParamDeserializer( \ IPC_NAME_OUT_##out_cnt out_list)) { \ Schema::Write(this, IPC_NAME_IN_##in_cnt in_list); \ } \ msg_class::~msg_class() {} \ bool msg_class::ReadSendParam(const Message* msg, Schema::SendParam* p) { \ return Schema::ReadSendParam(msg, p); \ } \ bool msg_class::ReadReplyParam(const Message* msg, \ TupleTypes::ValueTuple* p) { \ return Schema::ReadReplyParam(msg, p); \ } #define IPC_EMPTY_MESSAGE_LOG(msg_class) \ void msg_class::Log(std::string* name, \ const Message* msg, \ std::string* l) { \ if (name) \ *name = #msg_class; \ } #define IPC_ASYNC_MESSAGE_LOG(msg_class) \ void msg_class::Log(std::string* name, \ const Message* msg, \ std::string* l) { \ if (name) \ *name = #msg_class; \ if (!msg || !l) \ return; \ Schema::Param p; \ if (Schema::Read(msg, &p)) \ IPC::LogParam(p, l); \ } #define IPC_SYNC_MESSAGE_LOG(msg_class) \ void msg_class::Log(std::string* name, \ const Message* msg, \ std::string* l) { \ if (name) \ *name = #msg_class; \ if (!msg || !l) \ return; \ if (msg->is_sync()) { \ TupleTypes::ValueTuple p; \ if (Schema::ReadSendParam(msg, &p)) \ IPC::LogParam(p, l); \ AddOutputParamsToLog(msg, l); \ } else { \ TupleTypes::ValueTuple p; \ if (Schema::ReadReplyParam(msg, &p)) \ IPC::LogParam(p, l); \ } \ } #elif defined(IPC_MESSAGE_MACROS_LOG_ENABLED) #ifndef IPC_LOG_TABLE_CREATED #define IPC_LOG_TABLE_CREATED #include "base/hash_tables.h" typedef void (*LogFunction)(std::string* name, const IPC::Message* msg, std::string* params); typedef base::hash_map LogFunctionMap; LogFunctionMap g_log_function_mapping; #endif // IPC_LOG_TABLE_CREATED // "Log table" inclusion produces extra logging registration code. #define IPC_MESSAGE_EXTRA(sync, kind, msg_class, \ in_cnt, out_cnt, in_list, out_list) \ class LoggerRegisterHelper##msg_class { \ public: \ LoggerRegisterHelper##msg_class() { \ const uint32 msg_id = static_cast(msg_class::ID); \ g_log_function_mapping[msg_id] = msg_class::Log; \ } \ }; \ LoggerRegisterHelper##msg_class g_LoggerRegisterHelper##msg_class; #else // Normal inclusion produces nothing extra. #define IPC_MESSAGE_EXTRA(sync, kind, msg_class, \ in_cnt, out_cnt, in_list, out_list) #endif // defined(IPC_MESSAGE_IMPL) // Handle variable sized argument lists. These are usually invoked by token // pasting against the argument counts. #define IPC_TYPE_IN_0() #define IPC_TYPE_IN_1(t1) const t1& arg1 #define IPC_TYPE_IN_2(t1, t2) const t1& arg1, const t2& arg2 #define IPC_TYPE_IN_3(t1, t2, t3) const t1& arg1, const t2& arg2, const t3& arg3 #define IPC_TYPE_IN_4(t1, t2, t3, t4) const t1& arg1, const t2& arg2, const t3& arg3, const t4& arg4 #define IPC_TYPE_IN_5(t1, t2, t3, t4, t5) const t1& arg1, const t2& arg2, const t3& arg3, const t4& arg4, const t5& arg5 #define IPC_TYPE_OUT_0() #define IPC_TYPE_OUT_1(t1) t1* arg6 #define IPC_TYPE_OUT_2(t1, t2) t1* arg6, t2* arg7 #define IPC_TYPE_OUT_3(t1, t2, t3) t1* arg6, t2* arg7, t3* arg8 #define IPC_TYPE_OUT_4(t1, t2, t3, t4) t1* arg6, t2* arg7, t3* arg8, t4* arg9 #define IPC_TUPLE_IN_0() Tuple0 #define IPC_TUPLE_IN_1(t1) Tuple1 #define IPC_TUPLE_IN_2(t1, t2) Tuple2 #define IPC_TUPLE_IN_3(t1, t2, t3) Tuple3 #define IPC_TUPLE_IN_4(t1, t2, t3, t4) Tuple4 #define IPC_TUPLE_IN_5(t1, t2, t3, t4, t5) Tuple5 #define IPC_TUPLE_OUT_0() Tuple0 #define IPC_TUPLE_OUT_1(t1) Tuple1 #define IPC_TUPLE_OUT_2(t1, t2) Tuple2 #define IPC_TUPLE_OUT_3(t1, t2, t3) Tuple3 #define IPC_TUPLE_OUT_4(t1, t2, t3, t4) Tuple4 #define IPC_NAME_IN_0() MakeTuple() #define IPC_NAME_IN_1(t1) MakeRefTuple(arg1) #define IPC_NAME_IN_2(t1, t2) MakeRefTuple(arg1, arg2) #define IPC_NAME_IN_3(t1, t2, t3) MakeRefTuple(arg1, arg2, arg3) #define IPC_NAME_IN_4(t1, t2, t3, t4) MakeRefTuple(arg1, arg2, arg3, arg4) #define IPC_NAME_IN_5(t1, t2, t3, t4, t5) MakeRefTuple(arg1, arg2, arg3, arg4, arg5) #define IPC_NAME_OUT_0() MakeTuple() #define IPC_NAME_OUT_1(t1) MakeRefTuple(*arg6) #define IPC_NAME_OUT_2(t1, t2) MakeRefTuple(*arg6, *arg7) #define IPC_NAME_OUT_3(t1, t2, t3) MakeRefTuple(*arg6, *arg7, *arg8) #define IPC_NAME_OUT_4(t1, t2, t3, t4) MakeRefTuple(*arg6, *arg7, *arg8, *arg9) // There are places where the syntax requires a comma if there are input args, // if there are input args and output args, or if there are input args or // output args. These macros allow generation of the comma as needed; invoke // by token pasting against the argument counts. #define IPC_COMMA_0 #define IPC_COMMA_1 , #define IPC_COMMA_2 , #define IPC_COMMA_3 , #define IPC_COMMA_4 , #define IPC_COMMA_5 , #define IPC_COMMA_AND_0(x) #define IPC_COMMA_AND_1(x) x #define IPC_COMMA_AND_2(x) x #define IPC_COMMA_AND_3(x) x #define IPC_COMMA_AND_4(x) x #define IPC_COMMA_AND_5(x) x #define IPC_COMMA_OR_0(x) x #define IPC_COMMA_OR_1(x) , #define IPC_COMMA_OR_2(x) , #define IPC_COMMA_OR_3(x) , #define IPC_COMMA_OR_4(x) , #define IPC_COMMA_OR_5(x) , // Message IDs // Note: we currently use __LINE__ to give unique IDs to messages within // a file. They're globally unique since each file defines its own // IPC_MESSAGE_START. #define IPC_MESSAGE_ID() ((IPC_MESSAGE_START << 16) + __LINE__) #define IPC_MESSAGE_ID_CLASS(id) ((id) >> 16) #define IPC_MESSAGE_ID_LINE(id) ((id) & 0xffff) // Message crackers and handlers. // Prefer to use the IPC_BEGIN_MESSAGE_MAP_EX to the older macros since they // allow you to detect when a message could not be de-serialized. Usage: // // bool MyClass::OnMessageReceived(const IPC::Message& msg) { // bool handled = true; // bool msg_is_good = false; // IPC_BEGIN_MESSAGE_MAP_EX(MyClass, msg, msg_is_good) // IPC_MESSAGE_HANDLER(MsgClassOne, OnMsgClassOne) // ...more handlers here ... // IPC_MESSAGE_HANDLER(MsgClassTen, OnMsgClassTen) // IPC_MESSAGE_UNHANDLED(handled = false) // IPC_END_MESSAGE_MAP_EX() // if (!msg_is_good) { // // Signal error here or terminate offending process. // } // return handled; // } #define IPC_BEGIN_MESSAGE_MAP_EX(class_name, msg, msg_is_ok) \ { \ typedef class_name _IpcMessageHandlerClass; \ const IPC::Message& ipc_message__ = msg; \ bool& msg_is_ok__ = msg_is_ok; \ switch (ipc_message__.type()) { \ #define IPC_BEGIN_MESSAGE_MAP(class_name, msg) \ { \ typedef class_name _IpcMessageHandlerClass; \ const IPC::Message& ipc_message__ = msg; \ bool msg_is_ok__ = true; \ switch (ipc_message__.type()) { \ #define IPC_MESSAGE_FORWARD(msg_class, obj, member_func) \ case msg_class::ID: { \ TRACK_RUN_IN_IPC_HANDLER(member_func); \ msg_is_ok__ = msg_class::Dispatch(&ipc_message__, obj, this, \ &member_func); \ } \ break; #define IPC_MESSAGE_HANDLER(msg_class, member_func) \ IPC_MESSAGE_FORWARD(msg_class, this, _IpcMessageHandlerClass::member_func) #define IPC_MESSAGE_FORWARD_DELAY_REPLY(msg_class, obj, member_func) \ case msg_class::ID: { \ TRACK_RUN_IN_IPC_HANDLER(member_func); \ msg_is_ok__ = msg_class::DispatchDelayReply(&ipc_message__, obj, \ &member_func); \ } \ break; #define IPC_MESSAGE_HANDLER_DELAY_REPLY(msg_class, member_func) \ IPC_MESSAGE_FORWARD_DELAY_REPLY(msg_class, this, \ _IpcMessageHandlerClass::member_func) // TODO(jar): fix chrome frame to always supply |code| argument. #define IPC_MESSAGE_HANDLER_GENERIC(msg_class, code) \ case msg_class::ID: { \ /* TRACK_RUN_IN_IPC_HANDLER(code); TODO(jar) */ \ code; \ } \ break; #define IPC_REPLY_HANDLER(func) \ case IPC_REPLY_ID: { \ TRACK_RUN_IN_IPC_HANDLER(func); \ func(ipc_message__); \ } \ break; #define IPC_MESSAGE_UNHANDLED(code) \ default: { \ code; \ } \ break; #define IPC_MESSAGE_UNHANDLED_ERROR() \ IPC_MESSAGE_UNHANDLED(NOTREACHED() << \ "Invalid message with type = " << \ ipc_message__.type()) #define IPC_END_MESSAGE_MAP() \ DCHECK(msg_is_ok__); \ } \ } #define IPC_END_MESSAGE_MAP_EX() \ } \ } // This corresponds to an enum value from IPCMessageStart. #define IPC_MESSAGE_CLASS(message) \ IPC_MESSAGE_ID_CLASS(message.type()) #endif // IPC_IPC_MESSAGE_MACROS_H_ // Clean up IPC_MESSAGE_START in this unguarded section so that the // XXX_messages.h files need not do so themselves. This makes the // XXX_messages.h files easier to write. #undef IPC_MESSAGE_START