// Copyright (c) 2006-2009 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef IPC_IPC_MESSAGE_UTILS_H_ #define IPC_IPC_MESSAGE_UTILS_H_ #include <string> #include <vector> #include <map> #include "base/file_path.h" #include "base/format_macros.h" #include "base/nullable_string16.h" #include "base/string16.h" #include "base/string_util.h" #include "base/time.h" #include "base/tuple.h" #include "base/values.h" #if defined(OS_POSIX) #include "ipc/file_descriptor_set_posix.h" #endif #include "ipc/ipc_channel_handle.h" #include "ipc/ipc_sync_message.h" // Used by IPC_BEGIN_MESSAGES so that each message class starts from a unique // base. Messages have unique IDs across channels in order for the IPC logging // code to figure out the message class from its ID. enum IPCMessageStart { // By using a start value of 0 for automation messages, we keep backward // compatibility with old builds. AutomationMsgStart = 0, ViewMsgStart, ViewHostMsgStart, PluginProcessMsgStart, PluginProcessHostMsgStart, PluginMsgStart, PluginHostMsgStart, NPObjectMsgStart, TestMsgStart, DevToolsAgentMsgStart, DevToolsClientMsgStart, WorkerProcessMsgStart, WorkerProcessHostMsgStart, WorkerMsgStart, WorkerHostMsgStart, NaClProcessMsgStart, CommandBufferMsgStart, UtilityMsgStart, UtilityHostMsgStart, GpuMsgStart, GpuHostMsgStart, // NOTE: When you add a new message class, also update // IPCStatusView::IPCStatusView to ensure logging works. LastMsgIndex }; namespace IPC { //----------------------------------------------------------------------------- // An iterator class for reading the fields contained within a Message. class MessageIterator { public: explicit MessageIterator(const Message& m) : msg_(m), iter_(NULL) { } int NextInt() const { int val = -1; if (!msg_.ReadInt(&iter_, &val)) NOTREACHED(); return val; } intptr_t NextIntPtr() const { intptr_t val = 0; if (!msg_.ReadIntPtr(&iter_, &val)) NOTREACHED(); return val; } const std::string NextString() const { std::string val; if (!msg_.ReadString(&iter_, &val)) NOTREACHED(); return val; } const std::wstring NextWString() const { std::wstring val; if (!msg_.ReadWString(&iter_, &val)) NOTREACHED(); return val; } const void NextData(const char** data, int* length) const { if (!msg_.ReadData(&iter_, data, length)) { NOTREACHED(); } } private: const Message& msg_; mutable void* iter_; }; //----------------------------------------------------------------------------- // ParamTraits specializations, etc. template <class P> struct ParamTraits { }; template <class P> struct SimilarTypeTraits { typedef P Type; }; template <class P> static inline void WriteParam(Message* m, const P& p) { typedef typename SimilarTypeTraits<P>::Type Type; ParamTraits<Type>::Write(m, static_cast<const Type& >(p)); } template <class P> static inline bool WARN_UNUSED_RESULT ReadParam(const Message* m, void** iter, P* p) { typedef typename SimilarTypeTraits<P>::Type Type; return ParamTraits<Type>::Read(m, iter, reinterpret_cast<Type* >(p)); } template <class P> static inline void LogParam(const P& p, std::wstring* l) { typedef typename SimilarTypeTraits<P>::Type Type; ParamTraits<Type>::Log(static_cast<const Type& >(p), l); } template <> struct ParamTraits<bool> { typedef bool param_type; static void Write(Message* m, const param_type& p) { m->WriteBool(p); } static bool Read(const Message* m, void** iter, param_type* r) { return m->ReadBool(iter, r); } static void Log(const param_type& p, std::wstring* l) { l->append(p ? L"true" : L"false"); } }; template <> struct ParamTraits<int> { typedef int param_type; static void Write(Message* m, const param_type& p) { m->WriteInt(p); } static bool Read(const Message* m, void** iter, param_type* r) { return m->ReadInt(iter, r); } static void Log(const param_type& p, std::wstring* l) { l->append(StringPrintf(L"%d", p)); } }; template <> struct ParamTraits<unsigned int> { typedef unsigned int param_type; static void Write(Message* m, const param_type& p) { m->WriteInt(p); } static bool Read(const Message* m, void** iter, param_type* r) { return m->ReadInt(iter, reinterpret_cast<int*>(r)); } static void Log(const param_type& p, std::wstring* l) { l->append(StringPrintf(L"%d", p)); } }; template <> struct ParamTraits<long> { typedef long param_type; static void Write(Message* m, const param_type& p) { m->WriteLong(p); } static bool Read(const Message* m, void** iter, param_type* r) { return m->ReadLong(iter, r); } static void Log(const param_type& p, std::wstring* l) { l->append(StringPrintf(L"%ld", p)); } }; template <> struct ParamTraits<unsigned long> { typedef unsigned long param_type; static void Write(Message* m, const param_type& p) { m->WriteLong(p); } static bool Read(const Message* m, void** iter, param_type* r) { return m->ReadLong(iter, reinterpret_cast<long*>(r)); } static void Log(const param_type& p, std::wstring* l) { l->append(StringPrintf(L"%lu", p)); } }; template <> struct ParamTraits<long long> { typedef long long param_type; static void Write(Message* m, const param_type& p) { m->WriteInt64(static_cast<int64>(p)); } static bool Read(const Message* m, void** iter, param_type* r) { return m->ReadInt64(iter, reinterpret_cast<int64*>(r)); } static void Log(const param_type& p, std::wstring* l) { l->append(Int64ToWString(static_cast<int64>(p))); } }; template <> struct ParamTraits<unsigned long long> { typedef unsigned long long param_type; static void Write(Message* m, const param_type& p) { m->WriteInt64(p); } static bool Read(const Message* m, void** iter, param_type* r) { return m->ReadInt64(iter, reinterpret_cast<int64*>(r)); } static void Log(const param_type& p, std::wstring* l) { l->append(Uint64ToWString(p)); } }; template <> struct ParamTraits<double> { typedef double param_type; static void Write(Message* m, const param_type& p) { m->WriteData(reinterpret_cast<const char*>(&p), sizeof(param_type)); } static bool Read(const Message* m, void** iter, param_type* r) { const char *data; int data_size = 0; bool result = m->ReadData(iter, &data, &data_size); if (result && data_size == sizeof(param_type)) { memcpy(r, data, sizeof(param_type)); } else { result = false; NOTREACHED(); } return result; } static void Log(const param_type& p, std::wstring* l) { l->append(StringPrintf(L"e", p)); } }; template <> struct ParamTraits<wchar_t> { typedef wchar_t param_type; static void Write(Message* m, const param_type& p) { m->WriteData(reinterpret_cast<const char*>(&p), sizeof(param_type)); } static bool Read(const Message* m, void** iter, param_type* r) { const char *data; int data_size = 0; bool result = m->ReadData(iter, &data, &data_size); if (result && data_size == sizeof(param_type)) { memcpy(r, data, sizeof(param_type)); } else { result = false; NOTREACHED(); } return result; } static void Log(const param_type& p, std::wstring* l) { l->append(StringPrintf(L"%lc", p)); } }; template <> struct ParamTraits<base::Time> { typedef base::Time param_type; static void Write(Message* m, const param_type& p) { ParamTraits<int64>::Write(m, p.ToInternalValue()); } static bool Read(const Message* m, void** iter, param_type* r) { int64 value; if (!ParamTraits<int64>::Read(m, iter, &value)) return false; *r = base::Time::FromInternalValue(value); return true; } static void Log(const param_type& p, std::wstring* l) { ParamTraits<int64>::Log(p.ToInternalValue(), l); } }; #if defined(OS_WIN) template <> struct ParamTraits<LOGFONT> { typedef LOGFONT param_type; static void Write(Message* m, const param_type& p) { m->WriteData(reinterpret_cast<const char*>(&p), sizeof(LOGFONT)); } static bool Read(const Message* m, void** iter, param_type* r) { const char *data; int data_size = 0; bool result = m->ReadData(iter, &data, &data_size); if (result && data_size == sizeof(LOGFONT)) { memcpy(r, data, sizeof(LOGFONT)); } else { result = false; NOTREACHED(); } return result; } static void Log(const param_type& p, std::wstring* l) { l->append(StringPrintf(L"<LOGFONT>")); } }; template <> struct ParamTraits<MSG> { typedef MSG param_type; static void Write(Message* m, const param_type& p) { m->WriteData(reinterpret_cast<const char*>(&p), sizeof(MSG)); } static bool Read(const Message* m, void** iter, param_type* r) { const char *data; int data_size = 0; bool result = m->ReadData(iter, &data, &data_size); if (result && data_size == sizeof(MSG)) { memcpy(r, data, sizeof(MSG)); } else { result = false; NOTREACHED(); } return result; } }; #endif // defined(OS_WIN) template <> struct ParamTraits<DictionaryValue> { typedef DictionaryValue param_type; static void Write(Message* m, const param_type& p); static bool Read(const Message* m, void** iter, param_type* r); static void Log(const param_type& p, std::wstring* l); }; template <> struct ParamTraits<ListValue> { typedef ListValue param_type; static void Write(Message* m, const param_type& p); static bool Read(const Message* m, void** iter, param_type* r); static void Log(const param_type& p, std::wstring* l); }; template <> struct ParamTraits<std::string> { typedef std::string param_type; static void Write(Message* m, const param_type& p) { m->WriteString(p); } static bool Read(const Message* m, void** iter, param_type* r) { return m->ReadString(iter, r); } static void Log(const param_type& p, std::wstring* l) { l->append(UTF8ToWide(p)); } }; template<typename CharType> static void LogBytes(const std::vector<CharType>& data, std::wstring* out) { #if defined(OS_WIN) // Windows has a GUI for logging, which can handle arbitrary binary data. for (size_t i = 0; i < data.size(); ++i) out->push_back(data[i]); #else // On POSIX, we log to stdout, which we assume can display ASCII. static const size_t kMaxBytesToLog = 100; for (size_t i = 0; i < std::min(data.size(), kMaxBytesToLog); ++i) { if (isprint(data[i])) out->push_back(data[i]); else out->append(StringPrintf(L"[%02X]", static_cast<unsigned char>(data[i]))); } if (data.size() > kMaxBytesToLog) { out->append( StringPrintf(L" and %u more bytes", static_cast<unsigned>(data.size() - kMaxBytesToLog))); } #endif } template <> struct ParamTraits<std::vector<unsigned char> > { typedef std::vector<unsigned char> param_type; static void Write(Message* m, const param_type& p) { if (p.size() == 0) { m->WriteData(NULL, 0); } else { m->WriteData(reinterpret_cast<const char*>(&p.front()), static_cast<int>(p.size())); } } static bool Read(const Message* m, void** iter, param_type* r) { const char *data; int data_size = 0; if (!m->ReadData(iter, &data, &data_size) || data_size < 0) return false; r->resize(data_size); if (data_size) memcpy(&r->front(), data, data_size); return true; } static void Log(const param_type& p, std::wstring* l) { LogBytes(p, l); } }; template <> struct ParamTraits<std::vector<char> > { typedef std::vector<char> param_type; static void Write(Message* m, const param_type& p) { if (p.size() == 0) { m->WriteData(NULL, 0); } else { m->WriteData(&p.front(), static_cast<int>(p.size())); } } static bool Read(const Message* m, void** iter, param_type* r) { const char *data; int data_size = 0; if (!m->ReadData(iter, &data, &data_size) || data_size < 0) return false; r->resize(data_size); if (data_size) memcpy(&r->front(), data, data_size); return true; } static void Log(const param_type& p, std::wstring* l) { LogBytes(p, l); } }; template <class P> struct ParamTraits<std::vector<P> > { typedef std::vector<P> param_type; static void Write(Message* m, const param_type& p) { WriteParam(m, static_cast<int>(p.size())); for (size_t i = 0; i < p.size(); i++) WriteParam(m, p[i]); } static bool Read(const Message* m, void** iter, param_type* r) { int size; // ReadLength() checks for < 0 itself. if (!m->ReadLength(iter, &size)) return false; // Resizing beforehand is not safe, see BUG 1006367 for details. if (INT_MAX / sizeof(P) <= static_cast<size_t>(size)) return false; r->resize(size); for (int i = 0; i < size; i++) { if (!ReadParam(m, iter, &(*r)[i])) return false; } return true; } static void Log(const param_type& p, std::wstring* l) { for (size_t i = 0; i < p.size(); ++i) { if (i != 0) l->append(L" "); LogParam((p[i]), l); } } }; template <class K, class V> struct ParamTraits<std::map<K, V> > { typedef std::map<K, V> param_type; static void Write(Message* m, const param_type& p) { WriteParam(m, static_cast<int>(p.size())); typename param_type::const_iterator iter; for (iter = p.begin(); iter != p.end(); ++iter) { WriteParam(m, iter->first); WriteParam(m, iter->second); } } static bool Read(const Message* m, void** iter, param_type* r) { int size; if (!ReadParam(m, iter, &size) || size < 0) return false; for (int i = 0; i < size; ++i) { K k; if (!ReadParam(m, iter, &k)) return false; V& value = (*r)[k]; if (!ReadParam(m, iter, &value)) return false; } return true; } static void Log(const param_type& p, std::wstring* l) { l->append(L"<std::map>"); } }; template <> struct ParamTraits<std::wstring> { typedef std::wstring param_type; static void Write(Message* m, const param_type& p) { m->WriteWString(p); } static bool Read(const Message* m, void** iter, param_type* r) { return m->ReadWString(iter, r); } static void Log(const param_type& p, std::wstring* l) { l->append(p); } }; template <class A, class B> struct ParamTraits<std::pair<A, B> > { typedef std::pair<A, B> param_type; static void Write(Message* m, const param_type& p) { WriteParam(m, p.first); WriteParam(m, p.second); } static bool Read(const Message* m, void** iter, param_type* r) { return ReadParam(m, iter, &r->first) && ReadParam(m, iter, &r->second); } static void Log(const param_type& p, std::wstring* l) { l->append(L"("); LogParam(p.first, l); l->append(L", "); LogParam(p.second, l); l->append(L")"); } }; template <> struct ParamTraits<NullableString16> { typedef NullableString16 param_type; static void Write(Message* m, const param_type& p) { WriteParam(m, p.string()); WriteParam(m, p.is_null()); } static bool Read(const Message* m, void** iter, param_type* r) { string16 string; if (!ReadParam(m, iter, &string)) return false; bool is_null; if (!ReadParam(m, iter, &is_null)) return false; *r = NullableString16(string, is_null); return true; } static void Log(const param_type& p, std::wstring* l) { l->append(L"("); LogParam(p.string(), l); l->append(L", "); LogParam(p.is_null(), l); l->append(L")"); } }; // If WCHAR_T_IS_UTF16 is defined, then string16 is a std::wstring so we don't // need this trait. #if !defined(WCHAR_T_IS_UTF16) template <> struct ParamTraits<string16> { typedef string16 param_type; static void Write(Message* m, const param_type& p) { m->WriteString16(p); } static bool Read(const Message* m, void** iter, param_type* r) { return m->ReadString16(iter, r); } static void Log(const param_type& p, std::wstring* l) { l->append(UTF16ToWide(p)); } }; #endif // and, a few more useful types... #if defined(OS_WIN) template <> struct ParamTraits<HANDLE> { typedef HANDLE param_type; static void Write(Message* m, const param_type& p) { m->WriteIntPtr(reinterpret_cast<intptr_t>(p)); } static bool Read(const Message* m, void** iter, param_type* r) { DCHECK_EQ(sizeof(param_type), sizeof(intptr_t)); return m->ReadIntPtr(iter, reinterpret_cast<intptr_t*>(r)); } static void Log(const param_type& p, std::wstring* l) { l->append(StringPrintf(L"0x%X", p)); } }; template <> struct ParamTraits<HCURSOR> { typedef HCURSOR param_type; static void Write(Message* m, const param_type& p) { m->WriteIntPtr(reinterpret_cast<intptr_t>(p)); } static bool Read(const Message* m, void** iter, param_type* r) { DCHECK_EQ(sizeof(param_type), sizeof(intptr_t)); return m->ReadIntPtr(iter, reinterpret_cast<intptr_t*>(r)); } static void Log(const param_type& p, std::wstring* l) { l->append(StringPrintf(L"0x%X", p)); } }; template <> struct ParamTraits<HACCEL> { typedef HACCEL param_type; static void Write(Message* m, const param_type& p) { m->WriteIntPtr(reinterpret_cast<intptr_t>(p)); } static bool Read(const Message* m, void** iter, param_type* r) { DCHECK_EQ(sizeof(param_type), sizeof(intptr_t)); return m->ReadIntPtr(iter, reinterpret_cast<intptr_t*>(r)); } }; template <> struct ParamTraits<POINT> { typedef POINT param_type; static void Write(Message* m, const param_type& p) { m->WriteInt(p.x); m->WriteInt(p.y); } static bool Read(const Message* m, void** iter, param_type* r) { int x, y; if (!m->ReadInt(iter, &x) || !m->ReadInt(iter, &y)) return false; r->x = x; r->y = y; return true; } static void Log(const param_type& p, std::wstring* l) { l->append(StringPrintf(L"(%d, %d)", p.x, p.y)); } }; #endif // defined(OS_WIN) template <> struct ParamTraits<FilePath> { typedef FilePath param_type; static void Write(Message* m, const param_type& p) { ParamTraits<FilePath::StringType>::Write(m, p.value()); } static bool Read(const Message* m, void** iter, param_type* r) { FilePath::StringType value; if (!ParamTraits<FilePath::StringType>::Read(m, iter, &value)) return false; *r = FilePath(value); return true; } static void Log(const param_type& p, std::wstring* l) { ParamTraits<FilePath::StringType>::Log(p.value(), l); } }; #if defined(OS_POSIX) // FileDescriptors may be serialised over IPC channels on POSIX. On the // receiving side, the FileDescriptor is a valid duplicate of the file // descriptor which was transmitted: *it is not just a copy of the integer like // HANDLEs on Windows*. The only exception is if the file descriptor is < 0. In // this case, the receiving end will see a value of -1. *Zero is a valid file // descriptor*. // // The received file descriptor will have the |auto_close| flag set to true. The // code which handles the message is responsible for taking ownership of it. // File descriptors are OS resources and must be closed when no longer needed. // // When sending a file descriptor, the file descriptor must be valid at the time // of transmission. Since transmission is not synchronous, one should consider // dup()ing any file descriptors to be transmitted and setting the |auto_close| // flag, which causes the file descriptor to be closed after writing. template<> struct ParamTraits<base::FileDescriptor> { typedef base::FileDescriptor param_type; static void Write(Message* m, const param_type& p) { const bool valid = p.fd >= 0; WriteParam(m, valid); if (valid) { if (!m->WriteFileDescriptor(p)) NOTREACHED(); } } static bool Read(const Message* m, void** iter, param_type* r) { bool valid; if (!ReadParam(m, iter, &valid)) return false; if (!valid) { r->fd = -1; r->auto_close = false; return true; } return m->ReadFileDescriptor(iter, r); } static void Log(const param_type& p, std::wstring* l) { if (p.auto_close) { l->append(StringPrintf(L"FD(%d auto-close)", p.fd)); } else { l->append(StringPrintf(L"FD(%d)", p.fd)); } } }; #endif // defined(OS_POSIX) // A ChannelHandle is basically a platform-inspecific wrapper around the // fact that IPC endpoints are handled specially on POSIX. See above comments // on FileDescriptor for more background. template<> struct ParamTraits<IPC::ChannelHandle> { typedef ChannelHandle param_type; static void Write(Message* m, const param_type& p) { WriteParam(m, p.name); #if defined(OS_POSIX) WriteParam(m, p.socket); #endif } static bool Read(const Message* m, void** iter, param_type* r) { return ReadParam(m, iter, &r->name) #if defined(OS_POSIX) && ReadParam(m, iter, &r->socket) #endif ; } static void Log(const param_type& p, std::wstring* l) { l->append(ASCIIToWide(StringPrintf("ChannelHandle(%s", p.name.c_str()))); #if defined(OS_POSIX) ParamTraits<base::FileDescriptor>::Log(p.socket, l); #endif l->append(L")"); } }; #if defined(OS_WIN) template <> struct ParamTraits<XFORM> { typedef XFORM param_type; static void Write(Message* m, const param_type& p) { m->WriteData(reinterpret_cast<const char*>(&p), sizeof(XFORM)); } static bool Read(const Message* m, void** iter, param_type* r) { const char *data; int data_size = 0; bool result = m->ReadData(iter, &data, &data_size); if (result && data_size == sizeof(XFORM)) { memcpy(r, data, sizeof(XFORM)); } else { result = false; NOTREACHED(); } return result; } static void Log(const param_type& p, std::wstring* l) { l->append(L"<XFORM>"); } }; #endif // defined(OS_WIN) struct LogData { std::string channel; int32 routing_id; uint32 type; // "User-defined" message type, from ipc_message.h. std::wstring flags; int64 sent; // Time that the message was sent (i.e. at Send()). int64 receive; // Time before it was dispatched (i.e. before calling // OnMessageReceived). int64 dispatch; // Time after it was dispatched (i.e. after calling // OnMessageReceived). std::wstring message_name; std::wstring params; }; template <> struct ParamTraits<LogData> { typedef LogData param_type; static void Write(Message* m, const param_type& p) { WriteParam(m, p.channel); WriteParam(m, p.routing_id); WriteParam(m, static_cast<int>(p.type)); WriteParam(m, p.flags); WriteParam(m, p.sent); WriteParam(m, p.receive); WriteParam(m, p.dispatch); WriteParam(m, p.params); } static bool Read(const Message* m, void** iter, param_type* r) { int type; bool result = ReadParam(m, iter, &r->channel) && ReadParam(m, iter, &r->routing_id); ReadParam(m, iter, &type) && ReadParam(m, iter, &r->flags) && ReadParam(m, iter, &r->sent) && ReadParam(m, iter, &r->receive) && ReadParam(m, iter, &r->dispatch) && ReadParam(m, iter, &r->params); r->type = static_cast<uint16>(type); return result; } static void Log(const param_type& p, std::wstring* l) { // Doesn't make sense to implement this! } }; template <> struct ParamTraits<Message> { static void Write(Message* m, const Message& p) { m->WriteInt(p.size()); m->WriteData(reinterpret_cast<const char*>(p.data()), p.size()); } static bool Read(const Message* m, void** iter, Message* r) { int size; if (!m->ReadInt(iter, &size)) return false; const char* data; if (!m->ReadData(iter, &data, &size)) return false; *r = Message(data, size); return true; } static void Log(const Message& p, std::wstring* l) { l->append(L"<IPC::Message>"); } }; template <> struct ParamTraits<Tuple0> { typedef Tuple0 param_type; static void Write(Message* m, const param_type& p) { } static bool Read(const Message* m, void** iter, param_type* r) { return true; } static void Log(const param_type& p, std::wstring* l) { } }; template <class A> struct ParamTraits< Tuple1<A> > { typedef Tuple1<A> param_type; static void Write(Message* m, const param_type& p) { WriteParam(m, p.a); } static bool Read(const Message* m, void** iter, param_type* r) { return ReadParam(m, iter, &r->a); } static void Log(const param_type& p, std::wstring* l) { LogParam(p.a, l); } }; template <class A, class B> struct ParamTraits< Tuple2<A, B> > { typedef Tuple2<A, B> param_type; static void Write(Message* m, const param_type& p) { WriteParam(m, p.a); WriteParam(m, p.b); } static bool Read(const Message* m, void** iter, param_type* r) { return (ReadParam(m, iter, &r->a) && ReadParam(m, iter, &r->b)); } static void Log(const param_type& p, std::wstring* l) { LogParam(p.a, l); l->append(L", "); LogParam(p.b, l); } }; template <class A, class B, class C> struct ParamTraits< Tuple3<A, B, C> > { typedef Tuple3<A, B, C> param_type; static void Write(Message* m, const param_type& p) { WriteParam(m, p.a); WriteParam(m, p.b); WriteParam(m, p.c); } static bool Read(const Message* m, void** iter, param_type* r) { return (ReadParam(m, iter, &r->a) && ReadParam(m, iter, &r->b) && ReadParam(m, iter, &r->c)); } static void Log(const param_type& p, std::wstring* l) { LogParam(p.a, l); l->append(L", "); LogParam(p.b, l); l->append(L", "); LogParam(p.c, l); } }; template <class A, class B, class C, class D> struct ParamTraits< Tuple4<A, B, C, D> > { typedef Tuple4<A, B, C, D> param_type; static void Write(Message* m, const param_type& p) { WriteParam(m, p.a); WriteParam(m, p.b); WriteParam(m, p.c); WriteParam(m, p.d); } static bool Read(const Message* m, void** iter, param_type* r) { return (ReadParam(m, iter, &r->a) && ReadParam(m, iter, &r->b) && ReadParam(m, iter, &r->c) && ReadParam(m, iter, &r->d)); } static void Log(const param_type& p, std::wstring* l) { LogParam(p.a, l); l->append(L", "); LogParam(p.b, l); l->append(L", "); LogParam(p.c, l); l->append(L", "); LogParam(p.d, l); } }; template <class A, class B, class C, class D, class E> struct ParamTraits< Tuple5<A, B, C, D, E> > { typedef Tuple5<A, B, C, D, E> param_type; static void Write(Message* m, const param_type& p) { WriteParam(m, p.a); WriteParam(m, p.b); WriteParam(m, p.c); WriteParam(m, p.d); WriteParam(m, p.e); } static bool Read(const Message* m, void** iter, param_type* r) { return (ReadParam(m, iter, &r->a) && ReadParam(m, iter, &r->b) && ReadParam(m, iter, &r->c) && ReadParam(m, iter, &r->d) && ReadParam(m, iter, &r->e)); } static void Log(const param_type& p, std::wstring* l) { LogParam(p.a, l); l->append(L", "); LogParam(p.b, l); l->append(L", "); LogParam(p.c, l); l->append(L", "); LogParam(p.d, l); l->append(L", "); LogParam(p.e, l); } }; //----------------------------------------------------------------------------- // Generic message subclasses // Used for asynchronous messages. template <class ParamType> class MessageWithTuple : public Message { public: typedef ParamType Param; typedef typename ParamType::ParamTuple RefParam; MessageWithTuple(int32 routing_id, uint32 type, const RefParam& p) : Message(routing_id, type, PRIORITY_NORMAL) { WriteParam(this, p); } static bool Read(const Message* msg, Param* p) { void* iter = NULL; if (ReadParam(msg, &iter, p)) return true; NOTREACHED() << "Error deserializing message " << msg->type(); return false; } // Generic dispatcher. Should cover most cases. template<class T, class Method> static bool Dispatch(const Message* msg, T* obj, Method func) { Param p; if (Read(msg, &p)) { DispatchToMethod(obj, func, p); return true; } return false; } // The following dispatchers exist for the case where the callback function // needs the message as well. They assume that "Param" is a type of Tuple // (except the one arg case, as there is no Tuple1). template<class T, typename TA> static bool Dispatch(const Message* msg, T* obj, void (T::*func)(const Message&, TA)) { Param p; if (Read(msg, &p)) { (obj->*func)(*msg, p.a); return true; } return false; } template<class T, typename TA, typename TB> static bool Dispatch(const Message* msg, T* obj, void (T::*func)(const Message&, TA, TB)) { Param p; if (Read(msg, &p)) { (obj->*func)(*msg, p.a, p.b); return true; } return false; } template<class T, typename TA, typename TB, typename TC> static bool Dispatch(const Message* msg, T* obj, void (T::*func)(const Message&, TA, TB, TC)) { Param p; if (Read(msg, &p)) { (obj->*func)(*msg, p.a, p.b, p.c); return true; } return false; } template<class T, typename TA, typename TB, typename TC, typename TD> static bool Dispatch(const Message* msg, T* obj, void (T::*func)(const Message&, TA, TB, TC, TD)) { Param p; if (Read(msg, &p)) { (obj->*func)(*msg, p.a, p.b, p.c, p.d); return true; } return false; } template<class T, typename TA, typename TB, typename TC, typename TD, typename TE> static bool Dispatch(const Message* msg, T* obj, void (T::*func)(const Message&, TA, TB, TC, TD, TE)) { Param p; if (Read(msg, &p)) { (obj->*func)(*msg, p.a, p.b, p.c, p.d, p.e); return true; } return false; } static void Log(const Message* msg, std::wstring* l) { Param p; if (Read(msg, &p)) LogParam(p, l); } // Functions used to do manual unpacking. Only used by the automation code, // these should go away once that code uses SyncChannel. template<typename TA, typename TB> static bool Read(const IPC::Message* msg, TA* a, TB* b) { ParamType params; if (!Read(msg, ¶ms)) return false; *a = params.a; *b = params.b; return true; } template<typename TA, typename TB, typename TC> static bool Read(const IPC::Message* msg, TA* a, TB* b, TC* c) { ParamType params; if (!Read(msg, ¶ms)) return false; *a = params.a; *b = params.b; *c = params.c; return true; } template<typename TA, typename TB, typename TC, typename TD> static bool Read(const IPC::Message* msg, TA* a, TB* b, TC* c, TD* d) { ParamType params; if (!Read(msg, ¶ms)) return false; *a = params.a; *b = params.b; *c = params.c; *d = params.d; return true; } template<typename TA, typename TB, typename TC, typename TD, typename TE> static bool Read(const IPC::Message* msg, TA* a, TB* b, TC* c, TD* d, TE* e) { ParamType params; if (!Read(msg, ¶ms)) return false; *a = params.a; *b = params.b; *c = params.c; *d = params.d; *e = params.e; return true; } }; // This class assumes that its template argument is a RefTuple (a Tuple with // reference elements). template <class RefTuple> class ParamDeserializer : public MessageReplyDeserializer { public: explicit ParamDeserializer(const RefTuple& out) : out_(out) { } bool SerializeOutputParameters(const IPC::Message& msg, void* iter) { return ReadParam(&msg, &iter, &out_); } RefTuple out_; }; // defined in ipc_logging.cc void GenerateLogData(const std::string& channel, const Message& message, LogData* data); // Used for synchronous messages. template <class SendParamType, class ReplyParamType> class MessageWithReply : public SyncMessage { public: typedef SendParamType SendParam; typedef typename SendParam::ParamTuple RefSendParam; typedef ReplyParamType ReplyParam; MessageWithReply(int32 routing_id, uint32 type, const RefSendParam& send, const ReplyParam& reply) : SyncMessage(routing_id, type, PRIORITY_NORMAL, new ParamDeserializer<ReplyParam>(reply)) { WriteParam(this, send); } static void Log(const Message* msg, std::wstring* l) { if (msg->is_sync()) { SendParam p; void* iter = SyncMessage::GetDataIterator(msg); if (ReadParam(msg, &iter, &p)) LogParam(p, l); #if defined(IPC_MESSAGE_LOG_ENABLED) const std::wstring& output_params = msg->output_params(); if (!l->empty() && !output_params.empty()) l->append(L", "); l->append(output_params); #endif } else { // This is an outgoing reply. Now that we have the output parameters, we // can finally log the message. typename ReplyParam::ValueTuple p; void* iter = SyncMessage::GetDataIterator(msg); if (ReadParam(msg, &iter, &p)) LogParam(p, l); } } template<class T, class Method> static bool Dispatch(const Message* msg, T* obj, Method func) { SendParam send_params; void* iter = GetDataIterator(msg); Message* reply = GenerateReply(msg); bool error; if (ReadParam(msg, &iter, &send_params)) { typename ReplyParam::ValueTuple reply_params; DispatchToMethod(obj, func, send_params, &reply_params); WriteParam(reply, reply_params); error = false; #ifdef IPC_MESSAGE_LOG_ENABLED if (msg->received_time() != 0) { std::wstring output_params; LogParam(reply_params, &output_params); msg->set_output_params(output_params); } #endif } else { NOTREACHED() << "Error deserializing message " << msg->type(); reply->set_reply_error(); error = true; } obj->Send(reply); return !error; } template<class T, class Method> static bool DispatchDelayReply(const Message* msg, T* obj, Method func) { SendParam send_params; void* iter = GetDataIterator(msg); Message* reply = GenerateReply(msg); bool error; if (ReadParam(msg, &iter, &send_params)) { Tuple1<Message&> t = MakeRefTuple(*reply); #ifdef IPC_MESSAGE_LOG_ENABLED if (msg->sent_time()) { // Don't log the sync message after dispatch, as we don't have the // output parameters at that point. Instead, save its data and log it // with the outgoing reply message when it's sent. LogData* data = new LogData; GenerateLogData("", *msg, data); msg->set_dont_log(); reply->set_sync_log_data(data); } #endif DispatchToMethod(obj, func, send_params, &t); error = false; } else { NOTREACHED() << "Error deserializing message " << msg->type(); reply->set_reply_error(); obj->Send(reply); error = true; } return !error; } template<typename TA> static void WriteReplyParams(Message* reply, TA a) { ReplyParam p(a); WriteParam(reply, p); } template<typename TA, typename TB> static void WriteReplyParams(Message* reply, TA a, TB b) { ReplyParam p(a, b); WriteParam(reply, p); } template<typename TA, typename TB, typename TC> static void WriteReplyParams(Message* reply, TA a, TB b, TC c) { ReplyParam p(a, b, c); WriteParam(reply, p); } template<typename TA, typename TB, typename TC, typename TD> static void WriteReplyParams(Message* reply, TA a, TB b, TC c, TD d) { ReplyParam p(a, b, c, d); WriteParam(reply, p); } template<typename TA, typename TB, typename TC, typename TD, typename TE> static void WriteReplyParams(Message* reply, TA a, TB b, TC c, TD d, TE e) { ReplyParam p(a, b, c, d, e); WriteParam(reply, p); } }; //----------------------------------------------------------------------------- } // namespace IPC #endif // IPC_IPC_MESSAGE_UTILS_H_