// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "ipc/ipc_perftest_support.h" #include #include #include "base/basictypes.h" #include "base/logging.h" #include "base/memory/scoped_ptr.h" #include "base/pickle.h" #include "base/strings/stringprintf.h" #include "base/test/perf_time_logger.h" #include "base/test/test_io_thread.h" #include "base/threading/thread.h" #include "base/time/time.h" #include "build/build_config.h" #include "ipc/ipc_channel.h" #include "ipc/ipc_channel_proxy.h" #include "ipc/ipc_descriptors.h" #include "ipc/ipc_message_utils.h" #include "ipc/ipc_sender.h" namespace IPC { namespace test { // Avoid core 0 due to conflicts with Intel's Power Gadget. // Setting thread affinity will fail harmlessly on single/dual core machines. const int kSharedCore = 2; // This class simply collects stats about abstract "events" (each of which has a // start time and an end time). class EventTimeTracker { public: explicit EventTimeTracker(const char* name) : name_(name), count_(0) { } void AddEvent(const base::TimeTicks& start, const base::TimeTicks& end) { DCHECK(end >= start); count_++; base::TimeDelta duration = end - start; total_duration_ += duration; max_duration_ = std::max(max_duration_, duration); } void ShowResults() const { VLOG(1) << name_ << " count: " << count_; VLOG(1) << name_ << " total duration: " << total_duration_.InMillisecondsF() << " ms"; VLOG(1) << name_ << " average duration: " << (total_duration_.InMillisecondsF() / static_cast(count_)) << " ms"; VLOG(1) << name_ << " maximum duration: " << max_duration_.InMillisecondsF() << " ms"; } void Reset() { count_ = 0; total_duration_ = base::TimeDelta(); max_duration_ = base::TimeDelta(); } private: const std::string name_; uint64 count_; base::TimeDelta total_duration_; base::TimeDelta max_duration_; DISALLOW_COPY_AND_ASSIGN(EventTimeTracker); }; // This channel listener just replies to all messages with the exact same // message. It assumes each message has one string parameter. When the string // "quit" is sent, it will exit. class ChannelReflectorListener : public Listener { public: ChannelReflectorListener() : channel_(NULL), latency_tracker_("Client messages") { VLOG(1) << "Client listener up"; } ~ChannelReflectorListener() override { VLOG(1) << "Client listener down"; latency_tracker_.ShowResults(); } void Init(Channel* channel) { DCHECK(!channel_); channel_ = channel; } bool OnMessageReceived(const Message& message) override { CHECK(channel_); base::PickleIterator iter(message); int64 time_internal; EXPECT_TRUE(iter.ReadInt64(&time_internal)); int msgid; EXPECT_TRUE(iter.ReadInt(&msgid)); base::StringPiece payload; EXPECT_TRUE(iter.ReadStringPiece(&payload)); // Include message deserialization in latency. base::TimeTicks now = base::TimeTicks::Now(); if (payload == "hello") { latency_tracker_.Reset(); } else if (payload == "quit") { latency_tracker_.ShowResults(); base::MessageLoop::current()->QuitWhenIdle(); return true; } else { // Don't track hello and quit messages. latency_tracker_.AddEvent( base::TimeTicks::FromInternalValue(time_internal), now); } Message* msg = new Message(0, 2, Message::PRIORITY_NORMAL); msg->WriteInt64(base::TimeTicks::Now().ToInternalValue()); msg->WriteInt(msgid); msg->WriteString(payload); channel_->Send(msg); return true; } private: Channel* channel_; EventTimeTracker latency_tracker_; }; class PerformanceChannelListener : public Listener { public: explicit PerformanceChannelListener(const std::string& label) : label_(label), sender_(NULL), msg_count_(0), msg_size_(0), count_down_(0), latency_tracker_("Server messages") { VLOG(1) << "Server listener up"; } ~PerformanceChannelListener() override { VLOG(1) << "Server listener down"; } void Init(Sender* sender) { DCHECK(!sender_); sender_ = sender; } // Call this before running the message loop. void SetTestParams(int msg_count, size_t msg_size) { DCHECK_EQ(0, count_down_); msg_count_ = msg_count; msg_size_ = msg_size; count_down_ = msg_count_; payload_ = std::string(msg_size_, 'a'); } bool OnMessageReceived(const Message& message) override { CHECK(sender_); base::PickleIterator iter(message); int64 time_internal; EXPECT_TRUE(iter.ReadInt64(&time_internal)); int msgid; EXPECT_TRUE(iter.ReadInt(&msgid)); std::string reflected_payload; EXPECT_TRUE(iter.ReadString(&reflected_payload)); // Include message deserialization in latency. base::TimeTicks now = base::TimeTicks::Now(); if (reflected_payload == "hello") { // Start timing on hello. latency_tracker_.Reset(); DCHECK(!perf_logger_.get()); std::string test_name = base::StringPrintf("IPC_%s_Perf_%dx_%u", label_.c_str(), msg_count_, static_cast(msg_size_)); perf_logger_.reset(new base::PerfTimeLogger(test_name.c_str())); } else { DCHECK_EQ(payload_.size(), reflected_payload.size()); latency_tracker_.AddEvent( base::TimeTicks::FromInternalValue(time_internal), now); CHECK(count_down_ > 0); count_down_--; if (count_down_ == 0) { perf_logger_.reset(); // Stop the perf timer now. latency_tracker_.ShowResults(); base::MessageLoop::current()->QuitWhenIdle(); return true; } } Message* msg = new Message(0, 2, Message::PRIORITY_NORMAL); msg->WriteInt64(base::TimeTicks::Now().ToInternalValue()); msg->WriteInt(count_down_); msg->WriteString(payload_); sender_->Send(msg); return true; } private: std::string label_; Sender* sender_; int msg_count_; size_t msg_size_; int count_down_; std::string payload_; EventTimeTracker latency_tracker_; scoped_ptr perf_logger_; }; std::vector IPCChannelPerfTestBase::GetDefaultTestParams() { // Test several sizes. We use 12^N for message size, and limit the message // count to keep the test duration reasonable. std::vector list; list.push_back(PingPongTestParams(12, 50000)); list.push_back(PingPongTestParams(144, 50000)); list.push_back(PingPongTestParams(1728, 50000)); list.push_back(PingPongTestParams(20736, 12000)); list.push_back(PingPongTestParams(248832, 1000)); return list; } void IPCChannelPerfTestBase::RunTestChannelPingPong( const std::vector& params) { Init("PerformanceClient"); // Set up IPC channel and start client. PerformanceChannelListener listener("Channel"); CreateChannel(&listener); listener.Init(channel()); ASSERT_TRUE(ConnectChannel()); ASSERT_TRUE(StartClient()); LockThreadAffinity thread_locker(kSharedCore); for (size_t i = 0; i < params.size(); i++) { listener.SetTestParams(params[i].message_count(), params[i].message_size()); // This initial message will kick-start the ping-pong of messages. Message* message = new Message(0, 2, Message::PRIORITY_NORMAL); message->WriteInt64(base::TimeTicks::Now().ToInternalValue()); message->WriteInt(-1); message->WriteString("hello"); sender()->Send(message); // Run message loop. base::MessageLoop::current()->Run(); } // Send quit message. Message* message = new Message(0, 2, Message::PRIORITY_NORMAL); message->WriteInt64(base::TimeTicks::Now().ToInternalValue()); message->WriteInt(-1); message->WriteString("quit"); sender()->Send(message); EXPECT_TRUE(WaitForClientShutdown()); DestroyChannel(); } void IPCChannelPerfTestBase::RunTestChannelProxyPingPong( const std::vector& params) { InitWithCustomMessageLoop("PerformanceClient", make_scoped_ptr(new base::MessageLoop())); base::TestIOThread io_thread(base::TestIOThread::kAutoStart); // Set up IPC channel and start client. PerformanceChannelListener listener("ChannelProxy"); CreateChannelProxy(&listener, io_thread.task_runner()); listener.Init(channel_proxy()); ASSERT_TRUE(StartClient()); LockThreadAffinity thread_locker(kSharedCore); for (size_t i = 0; i < params.size(); i++) { listener.SetTestParams(params[i].message_count(), params[i].message_size()); // This initial message will kick-start the ping-pong of messages. Message* message = new Message(0, 2, Message::PRIORITY_NORMAL); message->WriteInt64(base::TimeTicks::Now().ToInternalValue()); message->WriteInt(-1); message->WriteString("hello"); sender()->Send(message); // Run message loop. base::MessageLoop::current()->Run(); } // Send quit message. Message* message = new Message(0, 2, Message::PRIORITY_NORMAL); message->WriteInt64(base::TimeTicks::Now().ToInternalValue()); message->WriteInt(-1); message->WriteString("quit"); sender()->Send(message); EXPECT_TRUE(WaitForClientShutdown()); DestroyChannelProxy(); } PingPongTestClient::PingPongTestClient() : listener_(new ChannelReflectorListener()) { } PingPongTestClient::~PingPongTestClient() { } scoped_ptr PingPongTestClient::CreateChannel( Listener* listener) { return Channel::CreateClient( IPCTestBase::GetChannelName("PerformanceClient"), listener); } int PingPongTestClient::RunMain() { LockThreadAffinity thread_locker(kSharedCore); scoped_ptr channel = CreateChannel(listener_.get()); listener_->Init(channel.get()); CHECK(channel->Connect()); base::MessageLoop::current()->Run(); return 0; } scoped_refptr PingPongTestClient::task_runner() { return main_message_loop_.task_runner(); } LockThreadAffinity::LockThreadAffinity(int cpu_number) : affinity_set_ok_(false) { #if defined(OS_WIN) const DWORD_PTR thread_mask = 1 << cpu_number; old_affinity_ = SetThreadAffinityMask(GetCurrentThread(), thread_mask); affinity_set_ok_ = old_affinity_ != 0; #elif defined(OS_LINUX) cpu_set_t cpuset; CPU_ZERO(&cpuset); CPU_SET(cpu_number, &cpuset); auto get_result = sched_getaffinity(0, sizeof(old_cpuset_), &old_cpuset_); DCHECK_EQ(0, get_result); auto set_result = sched_setaffinity(0, sizeof(cpuset), &cpuset); // Check for get_result failure, even though it should always succeed. affinity_set_ok_ = (set_result == 0) && (get_result == 0); #endif if (!affinity_set_ok_) LOG(WARNING) << "Failed to set thread affinity to CPU " << cpu_number; } LockThreadAffinity::~LockThreadAffinity() { if (!affinity_set_ok_) return; #if defined(OS_WIN) auto set_result = SetThreadAffinityMask(GetCurrentThread(), old_affinity_); DCHECK_NE(0u, set_result); #elif defined(OS_LINUX) auto set_result = sched_setaffinity(0, sizeof(old_cpuset_), &old_cpuset_); DCHECK_EQ(0, set_result); #endif } } // namespace test } // namespace IPC