// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef IPC_IPC_SYNC_CHANNEL_H_ #define IPC_IPC_SYNC_CHANNEL_H_ #include #include #include "base/basictypes.h" #include "base/memory/ref_counted.h" #include "base/synchronization/lock.h" #include "base/synchronization/waitable_event_watcher.h" #include "ipc/ipc_channel_handle.h" #include "ipc/ipc_channel_proxy.h" #include "ipc/ipc_sync_message.h" namespace base { class WaitableEvent; }; namespace IPC { class SyncMessage; class ChannelFactory; // This is similar to ChannelProxy, with the added feature of supporting sending // synchronous messages. // // Overview of how the sync channel works // -------------------------------------- // When the sending thread sends a synchronous message, we create a bunch // of tracking info (created in Send, stored in the PendingSyncMsg // structure) associated with the message that we identify by the unique // "MessageId" on the SyncMessage. Among the things we save is the // "Deserializer" which is provided by the sync message. This object is in // charge of reading the parameters from the reply message and putting them in // the output variables provided by its caller. // // The info gets stashed in a queue since we could have a nested stack of sync // messages (each side could send sync messages in response to sync messages, // so it works like calling a function). The message is sent to the I/O thread // for dispatch and the original thread blocks waiting for the reply. // // SyncContext maintains the queue in a threadsafe way and listens for replies // on the I/O thread. When a reply comes in that matches one of the messages // it's looking for (using the unique message ID), it will execute the // deserializer stashed from before, and unblock the original thread. // // // Significant complexity results from the fact that messages are still coming // in while the original thread is blocked. Normal async messages are queued // and dispatched after the blocking call is complete. Sync messages must // be dispatched in a reentrant manner to avoid deadlock. // // // Note that care must be taken that the lifetime of the ipc_thread argument // is more than this object. If the message loop goes away while this object // is running and it's used to send a message, then it will use the invalid // message loop pointer to proxy it to the ipc thread. class IPC_EXPORT SyncChannel : public ChannelProxy { public: enum RestrictDispatchGroup { kRestrictDispatchGroup_None = 0, }; // Creates and initializes a sync channel. If create_pipe_now is specified, // the channel will be initialized synchronously. // The naming pattern follows IPC::Channel. static scoped_ptr Create( const IPC::ChannelHandle& channel_handle, IPC::Channel::Mode mode, Listener* listener, const scoped_refptr& ipc_task_runner, bool create_pipe_now, base::WaitableEvent* shutdown_event); static scoped_ptr Create( scoped_ptr factory, Listener* listener, const scoped_refptr& ipc_task_runner, bool create_pipe_now, base::WaitableEvent* shutdown_event); // Creates an uninitialized sync channel. Call ChannelProxy::Init to // initialize the channel. This two-step setup allows message filters to be // added before any messages are sent or received. static scoped_ptr Create( Listener* listener, const scoped_refptr& ipc_task_runner, base::WaitableEvent* shutdown_event); virtual ~SyncChannel(); virtual bool Send(Message* message) OVERRIDE; // Sets the dispatch group for this channel, to only allow re-entrant dispatch // of messages to other channels in the same group. // // Normally, any unblocking message coming from any channel can be dispatched // when any (possibly other) channel is blocked on sending a message. This is // needed in some cases to unblock certain loops (e.g. necessary when some // processes share a window hierarchy), but may cause re-entrancy issues in // some cases where such loops are not possible. This flags allows the tagging // of some particular channels to only re-enter in known correct cases. // // Incoming messages on channels belonging to a group that is not // kRestrictDispatchGroup_None will only be dispatched while a sync message is // being sent on a channel of the *same* group. // Incoming messages belonging to the kRestrictDispatchGroup_None group (the // default) will be dispatched in any case. void SetRestrictDispatchChannelGroup(int group); protected: class ReceivedSyncMsgQueue; friend class ReceivedSyncMsgQueue; // SyncContext holds the per object data for SyncChannel, so that SyncChannel // can be deleted while it's being used in a different thread. See // ChannelProxy::Context for more information. class SyncContext : public Context { public: SyncContext( Listener* listener, const scoped_refptr& ipc_task_runner, base::WaitableEvent* shutdown_event); // Adds information about an outgoing sync message to the context so that // we know how to deserialize the reply. void Push(SyncMessage* sync_msg); // Cleanly remove the top deserializer (and throw it away). Returns the // result of the Send call for that message. bool Pop(); // Returns an event that's set when the send is complete, timed out or the // process shut down. base::WaitableEvent* GetSendDoneEvent(); // Returns an event that's set when an incoming message that's not the reply // needs to get dispatched (by calling SyncContext::DispatchMessages). base::WaitableEvent* GetDispatchEvent(); void DispatchMessages(); // Checks if the given message is blocking the listener thread because of a // synchronous send. If it is, the thread is unblocked and true is // returned. Otherwise the function returns false. bool TryToUnblockListener(const Message* msg); // Called on the IPC thread when a sync send that runs a nested message loop // times out. void OnSendTimeout(int message_id); base::WaitableEvent* shutdown_event() { return shutdown_event_; } ReceivedSyncMsgQueue* received_sync_msgs() { return received_sync_msgs_.get(); } void set_restrict_dispatch_group(int group) { restrict_dispatch_group_ = group; } int restrict_dispatch_group() const { return restrict_dispatch_group_; } base::WaitableEventWatcher::EventCallback MakeWaitableEventCallback(); private: virtual ~SyncContext(); // ChannelProxy methods that we override. // Called on the listener thread. virtual void Clear() OVERRIDE; // Called on the IPC thread. virtual bool OnMessageReceived(const Message& msg) OVERRIDE; virtual void OnChannelError() OVERRIDE; virtual void OnChannelOpened() OVERRIDE; virtual void OnChannelClosed() OVERRIDE; // Cancels all pending Send calls. void CancelPendingSends(); void OnWaitableEventSignaled(base::WaitableEvent* event); typedef std::deque PendingSyncMessageQueue; PendingSyncMessageQueue deserializers_; base::Lock deserializers_lock_; scoped_refptr received_sync_msgs_; base::WaitableEvent* shutdown_event_; base::WaitableEventWatcher shutdown_watcher_; base::WaitableEventWatcher::EventCallback shutdown_watcher_callback_; int restrict_dispatch_group_; }; private: SyncChannel( Listener* listener, const scoped_refptr& ipc_task_runner, base::WaitableEvent* shutdown_event); void OnWaitableEventSignaled(base::WaitableEvent* arg); SyncContext* sync_context() { return reinterpret_cast(context()); } // Both these functions wait for a reply, timeout or process shutdown. The // latter one also runs a nested message loop in the meantime. static void WaitForReply( SyncContext* context, base::WaitableEvent* pump_messages_event); // Runs a nested message loop until a reply arrives, times out, or the process // shuts down. static void WaitForReplyWithNestedMessageLoop(SyncContext* context); // Starts the dispatch watcher. void StartWatching(); // Used to signal events between the IPC and listener threads. base::WaitableEventWatcher dispatch_watcher_; base::WaitableEventWatcher::EventCallback dispatch_watcher_callback_; DISALLOW_COPY_AND_ASSIGN(SyncChannel); }; } // namespace IPC #endif // IPC_IPC_SYNC_CHANNEL_H_