// Copyright (c) 2010 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // Unit test for SyncChannel. #include #include #include "base/basictypes.h" #include "base/logging.h" #include "base/message_loop.h" #include "base/platform_thread.h" #include "base/stl_util-inl.h" #include "base/string_util.h" #include "base/third_party/dynamic_annotations/dynamic_annotations.h" #include "base/thread.h" #include "base/waitable_event.h" #include "ipc/ipc_message.h" #include "ipc/ipc_sync_channel.h" #include "ipc/ipc_sync_message_filter.h" #include "testing/gtest/include/gtest/gtest.h" #define MESSAGES_INTERNAL_FILE "ipc/ipc_sync_message_unittest.h" #include "ipc/ipc_message_macros.h" using namespace IPC; using base::WaitableEvent; namespace { // Base class for a "process" with listener and IPC threads. class Worker : public Channel::Listener, public Message::Sender { public: // Will create a channel without a name. Worker(Channel::Mode mode, const std::string& thread_name) : done_(new WaitableEvent(false, false)), channel_created_(new WaitableEvent(false, false)), mode_(mode), ipc_thread_((thread_name + "_ipc").c_str()), listener_thread_((thread_name + "_listener").c_str()), overrided_thread_(NULL), shutdown_event_(true, false) { // The data race on vfptr is real but is very hard // to suppress using standard Valgrind mechanism (suppressions). // We have to use ANNOTATE_BENIGN_RACE to hide the reports and // make ThreadSanitizer bots green. ANNOTATE_BENIGN_RACE(this, "Race on vfptr, http://crbug.com/25841"); } // Will create a named channel and use this name for the threads' name. Worker(const std::string& channel_name, Channel::Mode mode) : done_(new WaitableEvent(false, false)), channel_created_(new WaitableEvent(false, false)), channel_name_(channel_name), mode_(mode), ipc_thread_((channel_name + "_ipc").c_str()), listener_thread_((channel_name + "_listener").c_str()), overrided_thread_(NULL), shutdown_event_(true, false) { // The data race on vfptr is real but is very hard // to suppress using standard Valgrind mechanism (suppressions). // We have to use ANNOTATE_BENIGN_RACE to hide the reports and // make ThreadSanitizer bots green. ANNOTATE_BENIGN_RACE(this, "Race on vfptr, http://crbug.com/25841"); } // The IPC thread needs to outlive SyncChannel, so force the correct order of // destruction. virtual ~Worker() { WaitableEvent listener_done(false, false), ipc_done(false, false); ListenerThread()->message_loop()->PostTask(FROM_HERE, NewRunnableMethod( this, &Worker::OnListenerThreadShutdown1, &listener_done, &ipc_done)); listener_done.Wait(); ipc_done.Wait(); ipc_thread_.Stop(); listener_thread_.Stop(); } void AddRef() { } void Release() { } static bool ImplementsThreadSafeReferenceCounting() { return true; } bool Send(Message* msg) { return channel_->Send(msg); } bool SendWithTimeout(Message* msg, int timeout_ms) { return channel_->SendWithTimeout(msg, timeout_ms); } void WaitForChannelCreation() { channel_created_->Wait(); } void CloseChannel() { DCHECK(MessageLoop::current() == ListenerThread()->message_loop()); channel_->Close(); } void Start() { StartThread(&listener_thread_, MessageLoop::TYPE_DEFAULT); ListenerThread()->message_loop()->PostTask(FROM_HERE, NewRunnableMethod( this, &Worker::OnStart)); } void OverrideThread(base::Thread* overrided_thread) { DCHECK(overrided_thread_ == NULL); overrided_thread_ = overrided_thread; } bool SendAnswerToLife(bool pump, int timeout, bool succeed) { int answer = 0; SyncMessage* msg = new SyncChannelTestMsg_AnswerToLife(&answer); if (pump) msg->EnableMessagePumping(); bool result = SendWithTimeout(msg, timeout); DCHECK_EQ(result, succeed); DCHECK_EQ(answer, (succeed ? 42 : 0)); return result; } bool SendDouble(bool pump, bool succeed) { int answer = 0; SyncMessage* msg = new SyncChannelTestMsg_Double(5, &answer); if (pump) msg->EnableMessagePumping(); bool result = Send(msg); DCHECK_EQ(result, succeed); DCHECK_EQ(answer, (succeed ? 10 : 0)); return result; } Channel::Mode mode() { return mode_; } WaitableEvent* done_event() { return done_.get(); } WaitableEvent* shutdown_event() { return &shutdown_event_; } void ResetChannel() { channel_.reset(); } // Derived classes need to call this when they've completed their part of // the test. void Done() { done_->Signal(); } protected: IPC::SyncChannel* channel() { return channel_.get(); } // Functions for dervied classes to implement if they wish. virtual void Run() { } virtual void OnAnswer(int* answer) { NOTREACHED(); } virtual void OnAnswerDelay(Message* reply_msg) { // The message handler map below can only take one entry for // SyncChannelTestMsg_AnswerToLife, so since some classes want // the normal version while other want the delayed reply, we // call the normal version if the derived class didn't override // this function. int answer; OnAnswer(&answer); SyncChannelTestMsg_AnswerToLife::WriteReplyParams(reply_msg, answer); Send(reply_msg); } virtual void OnDouble(int in, int* out) { NOTREACHED(); } virtual void OnDoubleDelay(int in, Message* reply_msg) { int result; OnDouble(in, &result); SyncChannelTestMsg_Double::WriteReplyParams(reply_msg, result); Send(reply_msg); } virtual void OnNestedTestMsg(Message* reply_msg) { NOTREACHED(); } private: base::Thread* ListenerThread() { return overrided_thread_ ? overrided_thread_ : &listener_thread_; } // Called on the listener thread to create the sync channel. void OnStart() { // Link ipc_thread_, listener_thread_ and channel_ altogether. StartThread(&ipc_thread_, MessageLoop::TYPE_IO); channel_.reset(new SyncChannel( channel_name_, mode_, this, NULL, ipc_thread_.message_loop(), true, &shutdown_event_)); channel_created_->Signal(); Run(); } void OnListenerThreadShutdown1(WaitableEvent* listener_event, WaitableEvent* ipc_event) { // SyncChannel needs to be destructed on the thread that it was created on. channel_.reset(); MessageLoop::current()->RunAllPending(); ipc_thread_.message_loop()->PostTask(FROM_HERE, NewRunnableMethod( this, &Worker::OnIPCThreadShutdown, listener_event, ipc_event)); } void OnIPCThreadShutdown(WaitableEvent* listener_event, WaitableEvent* ipc_event) { MessageLoop::current()->RunAllPending(); ipc_event->Signal(); listener_thread_.message_loop()->PostTask(FROM_HERE, NewRunnableMethod( this, &Worker::OnListenerThreadShutdown2, listener_event)); } void OnListenerThreadShutdown2(WaitableEvent* listener_event) { MessageLoop::current()->RunAllPending(); listener_event->Signal(); } void OnMessageReceived(const Message& message) { IPC_BEGIN_MESSAGE_MAP(Worker, message) IPC_MESSAGE_HANDLER_DELAY_REPLY(SyncChannelTestMsg_Double, OnDoubleDelay) IPC_MESSAGE_HANDLER_DELAY_REPLY(SyncChannelTestMsg_AnswerToLife, OnAnswerDelay) IPC_MESSAGE_HANDLER_DELAY_REPLY(SyncChannelNestedTestMsg_String, OnNestedTestMsg) IPC_END_MESSAGE_MAP() } void StartThread(base::Thread* thread, MessageLoop::Type type) { base::Thread::Options options; options.message_loop_type = type; thread->StartWithOptions(options); } scoped_ptr done_; scoped_ptr channel_created_; std::string channel_name_; Channel::Mode mode_; scoped_ptr channel_; base::Thread ipc_thread_; base::Thread listener_thread_; base::Thread* overrided_thread_; base::WaitableEvent shutdown_event_; DISALLOW_COPY_AND_ASSIGN(Worker); }; // Starts the test with the given workers. This function deletes the workers // when it's done. void RunTest(std::vector workers) { // First we create the workers that are channel servers, or else the other // workers' channel initialization might fail because the pipe isn't created.. for (size_t i = 0; i < workers.size(); ++i) { if (workers[i]->mode() == Channel::MODE_SERVER) { workers[i]->Start(); workers[i]->WaitForChannelCreation(); } } // now create the clients for (size_t i = 0; i < workers.size(); ++i) { if (workers[i]->mode() == Channel::MODE_CLIENT) workers[i]->Start(); } // wait for all the workers to finish for (size_t i = 0; i < workers.size(); ++i) workers[i]->done_event()->Wait(); STLDeleteContainerPointers(workers.begin(), workers.end()); } } // namespace class IPCSyncChannelTest : public testing::Test { private: MessageLoop message_loop_; }; //----------------------------------------------------------------------------- namespace { class SimpleServer : public Worker { public: SimpleServer(bool pump_during_send) : Worker(Channel::MODE_SERVER, "simpler_server"), pump_during_send_(pump_during_send) { } void Run() { SendAnswerToLife(pump_during_send_, base::kNoTimeout, true); Done(); } bool pump_during_send_; }; class SimpleClient : public Worker { public: SimpleClient() : Worker(Channel::MODE_CLIENT, "simple_client") { } void OnAnswer(int* answer) { *answer = 42; Done(); } }; void Simple(bool pump_during_send) { std::vector workers; workers.push_back(new SimpleServer(pump_during_send)); workers.push_back(new SimpleClient()); RunTest(workers); } } // namespace // Tests basic synchronous call TEST_F(IPCSyncChannelTest, Simple) { Simple(false); Simple(true); } //----------------------------------------------------------------------------- namespace { class DelayClient : public Worker { public: DelayClient() : Worker(Channel::MODE_CLIENT, "delay_client") { } void OnAnswerDelay(Message* reply_msg) { SyncChannelTestMsg_AnswerToLife::WriteReplyParams(reply_msg, 42); Send(reply_msg); Done(); } }; void DelayReply(bool pump_during_send) { std::vector workers; workers.push_back(new SimpleServer(pump_during_send)); workers.push_back(new DelayClient()); RunTest(workers); } } // namespace // Tests that asynchronous replies work TEST_F(IPCSyncChannelTest, DelayReply) { DelayReply(false); DelayReply(true); } //----------------------------------------------------------------------------- namespace { class NoHangServer : public Worker { public: explicit NoHangServer(WaitableEvent* got_first_reply, bool pump_during_send) : Worker(Channel::MODE_SERVER, "no_hang_server"), got_first_reply_(got_first_reply), pump_during_send_(pump_during_send) { } void Run() { SendAnswerToLife(pump_during_send_, base::kNoTimeout, true); got_first_reply_->Signal(); SendAnswerToLife(pump_during_send_, base::kNoTimeout, false); Done(); } WaitableEvent* got_first_reply_; bool pump_during_send_; }; class NoHangClient : public Worker { public: explicit NoHangClient(WaitableEvent* got_first_reply) : Worker(Channel::MODE_CLIENT, "no_hang_client"), got_first_reply_(got_first_reply) { } virtual void OnAnswerDelay(Message* reply_msg) { // Use the DELAY_REPLY macro so that we can force the reply to be sent // before this function returns (when the channel will be reset). SyncChannelTestMsg_AnswerToLife::WriteReplyParams(reply_msg, 42); Send(reply_msg); got_first_reply_->Wait(); CloseChannel(); Done(); } WaitableEvent* got_first_reply_; }; void NoHang(bool pump_during_send) { WaitableEvent got_first_reply(false, false); std::vector workers; workers.push_back(new NoHangServer(&got_first_reply, pump_during_send)); workers.push_back(new NoHangClient(&got_first_reply)); RunTest(workers); } } // namespace // Tests that caller doesn't hang if receiver dies TEST_F(IPCSyncChannelTest, NoHang) { NoHang(false); NoHang(true); } //----------------------------------------------------------------------------- namespace { class UnblockServer : public Worker { public: UnblockServer(bool pump_during_send, bool delete_during_send) : Worker(Channel::MODE_SERVER, "unblock_server"), pump_during_send_(pump_during_send), delete_during_send_(delete_during_send) { } void Run() { if (delete_during_send_) { // Use custom code since race conditions mean the answer may or may not be // available. int answer = 0; SyncMessage* msg = new SyncChannelTestMsg_AnswerToLife(&answer); if (pump_during_send_) msg->EnableMessagePumping(); Send(msg); } else { SendAnswerToLife(pump_during_send_, base::kNoTimeout, true); } Done(); } void OnDoubleDelay(int in, Message* reply_msg) { SyncChannelTestMsg_Double::WriteReplyParams(reply_msg, in * 2); Send(reply_msg); if (delete_during_send_) ResetChannel(); } bool pump_during_send_; bool delete_during_send_; }; class UnblockClient : public Worker { public: UnblockClient(bool pump_during_send) : Worker(Channel::MODE_CLIENT, "unblock_client"), pump_during_send_(pump_during_send) { } void OnAnswer(int* answer) { SendDouble(pump_during_send_, true); *answer = 42; Done(); } bool pump_during_send_; }; void Unblock(bool server_pump, bool client_pump, bool delete_during_send) { std::vector workers; workers.push_back(new UnblockServer(server_pump, delete_during_send)); workers.push_back(new UnblockClient(client_pump)); RunTest(workers); } } // namespace // Tests that the caller unblocks to answer a sync message from the receiver. TEST_F(IPCSyncChannelTest, Unblock) { Unblock(false, false, false); Unblock(false, true, false); Unblock(true, false, false); Unblock(true, true, false); } //----------------------------------------------------------------------------- // Tests that the the IPC::SyncChannel object can be deleted during a Send. TEST_F(IPCSyncChannelTest, ChannelDeleteDuringSend) { Unblock(false, false, true); Unblock(false, true, true); Unblock(true, false, true); Unblock(true, true, true); } //----------------------------------------------------------------------------- namespace { class RecursiveServer : public Worker { public: explicit RecursiveServer( bool expected_send_result, bool pump_first, bool pump_second) : Worker(Channel::MODE_SERVER, "recursive_server"), expected_send_result_(expected_send_result), pump_first_(pump_first), pump_second_(pump_second) { } void Run() { SendDouble(pump_first_, expected_send_result_); Done(); } void OnDouble(int in, int* out) { *out = in * 2; SendAnswerToLife(pump_second_, base::kNoTimeout, expected_send_result_); } bool expected_send_result_, pump_first_, pump_second_; }; class RecursiveClient : public Worker { public: explicit RecursiveClient(bool pump_during_send, bool close_channel) : Worker(Channel::MODE_CLIENT, "recursive_client"), pump_during_send_(pump_during_send), close_channel_(close_channel) { } void OnDoubleDelay(int in, Message* reply_msg) { SendDouble(pump_during_send_, !close_channel_); if (close_channel_) { delete reply_msg; } else { SyncChannelTestMsg_Double::WriteReplyParams(reply_msg, in * 2); Send(reply_msg); } Done(); } void OnAnswerDelay(Message* reply_msg) { if (close_channel_) { delete reply_msg; CloseChannel(); } else { SyncChannelTestMsg_AnswerToLife::WriteReplyParams(reply_msg, 42); Send(reply_msg); } } bool pump_during_send_, close_channel_; }; void Recursive( bool server_pump_first, bool server_pump_second, bool client_pump) { std::vector workers; workers.push_back( new RecursiveServer(true, server_pump_first, server_pump_second)); workers.push_back(new RecursiveClient(client_pump, false)); RunTest(workers); } } // namespace // Tests a server calling Send while another Send is pending. TEST_F(IPCSyncChannelTest, Recursive) { Recursive(false, false, false); Recursive(false, false, true); Recursive(false, true, false); Recursive(false, true, true); Recursive(true, false, false); Recursive(true, false, true); Recursive(true, true, false); Recursive(true, true, true); } //----------------------------------------------------------------------------- namespace { void RecursiveNoHang( bool server_pump_first, bool server_pump_second, bool client_pump) { std::vector workers; workers.push_back( new RecursiveServer(false, server_pump_first, server_pump_second)); workers.push_back(new RecursiveClient(client_pump, true)); RunTest(workers); } } // namespace // Tests that if a caller makes a sync call during an existing sync call and // the receiver dies, neither of the Send() calls hang. TEST_F(IPCSyncChannelTest, RecursiveNoHang) { RecursiveNoHang(false, false, false); RecursiveNoHang(false, false, true); RecursiveNoHang(false, true, false); RecursiveNoHang(false, true, true); RecursiveNoHang(true, false, false); RecursiveNoHang(true, false, true); RecursiveNoHang(true, true, false); RecursiveNoHang(true, true, true); } //----------------------------------------------------------------------------- namespace { class MultipleServer1 : public Worker { public: MultipleServer1(bool pump_during_send) : Worker("test_channel1", Channel::MODE_SERVER), pump_during_send_(pump_during_send) { } void Run() { SendDouble(pump_during_send_, true); Done(); } bool pump_during_send_; }; class MultipleClient1 : public Worker { public: MultipleClient1(WaitableEvent* client1_msg_received, WaitableEvent* client1_can_reply) : Worker("test_channel1", Channel::MODE_CLIENT), client1_msg_received_(client1_msg_received), client1_can_reply_(client1_can_reply) { } void OnDouble(int in, int* out) { client1_msg_received_->Signal(); *out = in * 2; client1_can_reply_->Wait(); Done(); } private: WaitableEvent *client1_msg_received_, *client1_can_reply_; }; class MultipleServer2 : public Worker { public: MultipleServer2() : Worker("test_channel2", Channel::MODE_SERVER) { } void OnAnswer(int* result) { *result = 42; Done(); } }; class MultipleClient2 : public Worker { public: MultipleClient2( WaitableEvent* client1_msg_received, WaitableEvent* client1_can_reply, bool pump_during_send) : Worker("test_channel2", Channel::MODE_CLIENT), client1_msg_received_(client1_msg_received), client1_can_reply_(client1_can_reply), pump_during_send_(pump_during_send) { } void Run() { client1_msg_received_->Wait(); SendAnswerToLife(pump_during_send_, base::kNoTimeout, true); client1_can_reply_->Signal(); Done(); } private: WaitableEvent *client1_msg_received_, *client1_can_reply_; bool pump_during_send_; }; void Multiple(bool server_pump, bool client_pump) { std::vector workers; // A shared worker thread so that server1 and server2 run on one thread. base::Thread worker_thread("Multiple"); ASSERT_TRUE(worker_thread.Start()); // Server1 sends a sync msg to client1, which blocks the reply until // server2 (which runs on the same worker thread as server1) responds // to a sync msg from client2. WaitableEvent client1_msg_received(false, false); WaitableEvent client1_can_reply(false, false); Worker* worker; worker = new MultipleServer2(); worker->OverrideThread(&worker_thread); workers.push_back(worker); worker = new MultipleClient2( &client1_msg_received, &client1_can_reply, client_pump); workers.push_back(worker); worker = new MultipleServer1(server_pump); worker->OverrideThread(&worker_thread); workers.push_back(worker); worker = new MultipleClient1( &client1_msg_received, &client1_can_reply); workers.push_back(worker); RunTest(workers); } } // namespace // Tests that multiple SyncObjects on the same listener thread can unblock each // other. TEST_F(IPCSyncChannelTest, Multiple) { Multiple(false, false); Multiple(false, true); Multiple(true, false); Multiple(true, true); } //----------------------------------------------------------------------------- namespace { // This class provides server side functionality to test the case where // multiple sync channels are in use on the same thread on the client and // nested calls are issued. class QueuedReplyServer : public Worker { public: QueuedReplyServer(base::Thread* listener_thread, const std::string& channel_name, const std::string& reply_text) : Worker(channel_name, Channel::MODE_SERVER), reply_text_(reply_text) { Worker::OverrideThread(listener_thread); } virtual void OnNestedTestMsg(Message* reply_msg) { LOG(INFO) << __FUNCTION__ << " Sending reply: " << reply_text_.c_str(); SyncChannelNestedTestMsg_String::WriteReplyParams( reply_msg, reply_text_); Send(reply_msg); Done(); } private: std::string reply_text_; }; // The QueuedReplyClient class provides functionality to test the case where // multiple sync channels are in use on the same thread and they make nested // sync calls, i.e. while the first channel waits for a response it makes a // sync call on another channel. // The callstack should unwind correctly, i.e. the outermost call should // complete first, and so on. class QueuedReplyClient : public Worker { public: QueuedReplyClient(base::Thread* listener_thread, const std::string& channel_name, const std::string& expected_text, bool pump_during_send) : Worker(channel_name, Channel::MODE_CLIENT), expected_text_(expected_text), pump_during_send_(pump_during_send) { Worker::OverrideThread(listener_thread); } virtual void Run() { std::string response; SyncMessage* msg = new SyncChannelNestedTestMsg_String(&response); if (pump_during_send_) msg->EnableMessagePumping(); bool result = Send(msg); DCHECK(result); DCHECK_EQ(response, expected_text_); LOG(INFO) << __FUNCTION__ << " Received reply: " << response.c_str(); Done(); } private: bool pump_during_send_; std::string expected_text_; }; void QueuedReply(bool client_pump) { std::vector workers; // A shared worker thread for servers base::Thread server_worker_thread("QueuedReply_ServerListener"); ASSERT_TRUE(server_worker_thread.Start()); base::Thread client_worker_thread("QueuedReply_ClientListener"); ASSERT_TRUE(client_worker_thread.Start()); Worker* worker; worker = new QueuedReplyServer(&server_worker_thread, "QueuedReply_Server1", "Got first message"); workers.push_back(worker); worker = new QueuedReplyServer(&server_worker_thread, "QueuedReply_Server2", "Got second message"); workers.push_back(worker); worker = new QueuedReplyClient(&client_worker_thread, "QueuedReply_Server1", "Got first message", client_pump); workers.push_back(worker); worker = new QueuedReplyClient(&client_worker_thread, "QueuedReply_Server2", "Got second message", client_pump); workers.push_back(worker); RunTest(workers); } } // namespace // While a blocking send is in progress, the listener thread might answer other // synchronous messages. This tests that if during the response to another // message the reply to the original messages comes, it is queued up correctly // and the original Send is unblocked later. // We also test that the send call stacks unwind correctly when the channel // pumps messages while waiting for a response. TEST_F(IPCSyncChannelTest, QueuedReply) { QueuedReply(false); QueuedReply(true); } //----------------------------------------------------------------------------- namespace { class BadServer : public Worker { public: BadServer(bool pump_during_send) : Worker(Channel::MODE_SERVER, "simpler_server"), pump_during_send_(pump_during_send) { } void Run() { int answer = 0; SyncMessage* msg = new SyncMessage( MSG_ROUTING_CONTROL, SyncChannelTestMsg_Double::ID, Message::PRIORITY_NORMAL, NULL); if (pump_during_send_) msg->EnableMessagePumping(); // Temporarily set the minimum logging very high so that the assertion // in ipc_message_utils doesn't fire. int log_level = logging::GetMinLogLevel(); logging::SetMinLogLevel(kint32max); bool result = Send(msg); logging::SetMinLogLevel(log_level); DCHECK(!result); // Need to send another message to get the client to call Done(). result = Send(new SyncChannelTestMsg_AnswerToLife(&answer)); DCHECK(result); DCHECK_EQ(answer, 42); Done(); } bool pump_during_send_; }; void BadMessage(bool pump_during_send) { std::vector workers; workers.push_back(new BadServer(pump_during_send)); workers.push_back(new SimpleClient()); RunTest(workers); } } // namespace // Tests that if a message is not serialized correctly, the Send() will fail. TEST_F(IPCSyncChannelTest, BadMessage) { BadMessage(false); BadMessage(true); } //----------------------------------------------------------------------------- namespace { class ChattyClient : public Worker { public: ChattyClient() : Worker(Channel::MODE_CLIENT, "chatty_client") { } void OnAnswer(int* answer) { // The PostMessage limit is 10k. Send 20% more than that. const int kMessageLimit = 10000; const int kMessagesToSend = kMessageLimit * 120 / 100; for (int i = 0; i < kMessagesToSend; ++i) { if (!SendDouble(false, true)) break; } *answer = 42; Done(); } }; void ChattyServer(bool pump_during_send) { std::vector workers; workers.push_back(new UnblockServer(pump_during_send, false)); workers.push_back(new ChattyClient()); RunTest(workers); } } // namespace // Tests http://b/1093251 - that sending lots of sync messages while // the receiver is waiting for a sync reply does not overflow the PostMessage // queue. TEST_F(IPCSyncChannelTest, ChattyServer) { ChattyServer(false); ChattyServer(true); } //------------------------------------------------------------------------------ namespace { class TimeoutServer : public Worker { public: TimeoutServer(int timeout_ms, std::vector timeout_seq, bool pump_during_send) : Worker(Channel::MODE_SERVER, "timeout_server"), timeout_ms_(timeout_ms), timeout_seq_(timeout_seq), pump_during_send_(pump_during_send) { } void Run() { for (std::vector::const_iterator iter = timeout_seq_.begin(); iter != timeout_seq_.end(); ++iter) { SendAnswerToLife(pump_during_send_, timeout_ms_, !*iter); } Done(); } private: int timeout_ms_; std::vector timeout_seq_; bool pump_during_send_; }; class UnresponsiveClient : public Worker { public: UnresponsiveClient(std::vector timeout_seq) : Worker(Channel::MODE_CLIENT, "unresponsive_client"), timeout_seq_(timeout_seq) { } void OnAnswerDelay(Message* reply_msg) { DCHECK(!timeout_seq_.empty()); if (!timeout_seq_[0]) { SyncChannelTestMsg_AnswerToLife::WriteReplyParams(reply_msg, 42); Send(reply_msg); } else { // Don't reply. delete reply_msg; } timeout_seq_.erase(timeout_seq_.begin()); if (timeout_seq_.empty()) Done(); } private: // Whether we should time-out or respond to the various messages we receive. std::vector timeout_seq_; }; void SendWithTimeoutOK(bool pump_during_send) { std::vector workers; std::vector timeout_seq; timeout_seq.push_back(false); timeout_seq.push_back(false); timeout_seq.push_back(false); workers.push_back(new TimeoutServer(5000, timeout_seq, pump_during_send)); workers.push_back(new SimpleClient()); RunTest(workers); } void SendWithTimeoutTimeout(bool pump_during_send) { std::vector workers; std::vector timeout_seq; timeout_seq.push_back(true); timeout_seq.push_back(false); timeout_seq.push_back(false); workers.push_back(new TimeoutServer(100, timeout_seq, pump_during_send)); workers.push_back(new UnresponsiveClient(timeout_seq)); RunTest(workers); } void SendWithTimeoutMixedOKAndTimeout(bool pump_during_send) { std::vector workers; std::vector timeout_seq; timeout_seq.push_back(true); timeout_seq.push_back(false); timeout_seq.push_back(false); timeout_seq.push_back(true); timeout_seq.push_back(false); workers.push_back(new TimeoutServer(100, timeout_seq, pump_during_send)); workers.push_back(new UnresponsiveClient(timeout_seq)); RunTest(workers); } } // namespace // Tests that SendWithTimeout does not time-out if the response comes back fast // enough. TEST_F(IPCSyncChannelTest, SendWithTimeoutOK) { SendWithTimeoutOK(false); SendWithTimeoutOK(true); } // Tests that SendWithTimeout does time-out. TEST_F(IPCSyncChannelTest, SendWithTimeoutTimeout) { SendWithTimeoutTimeout(false); SendWithTimeoutTimeout(true); } // Sends some message that time-out and some that succeed. TEST_F(IPCSyncChannelTest, SendWithTimeoutMixedOKAndTimeout) { SendWithTimeoutMixedOKAndTimeout(false); SendWithTimeoutMixedOKAndTimeout(true); } //------------------------------------------------------------------------------ namespace { class NestedTask : public Task { public: NestedTask(Worker* server) : server_(server) { } void Run() { // Sleep a bit so that we wake up after the reply has been received. PlatformThread::Sleep(250); server_->SendAnswerToLife(true, base::kNoTimeout, true); } Worker* server_; }; static bool timeout_occured = false; class TimeoutTask : public Task { public: void Run() { timeout_occured = true; } }; class DoneEventRaceServer : public Worker { public: DoneEventRaceServer() : Worker(Channel::MODE_SERVER, "done_event_race_server") { } void Run() { MessageLoop::current()->PostTask(FROM_HERE, new NestedTask(this)); MessageLoop::current()->PostDelayedTask(FROM_HERE, new TimeoutTask(), 9000); // Even though we have a timeout on the Send, it will succeed since for this // bug, the reply message comes back and is deserialized, however the done // event wasn't set. So we indirectly use the timeout task to notice if a // timeout occurred. SendAnswerToLife(true, 10000, true); DCHECK(!timeout_occured); Done(); } }; } // namespace // Tests http://b/1474092 - that if after the done_event is set but before // OnObjectSignaled is called another message is sent out, then after its // reply comes back OnObjectSignaled will be called for the first message. TEST_F(IPCSyncChannelTest, DoneEventRace) { std::vector workers; workers.push_back(new DoneEventRaceServer()); workers.push_back(new SimpleClient()); RunTest(workers); } //----------------------------------------------------------------------------- namespace { class TestSyncMessageFilter : public IPC::SyncMessageFilter { public: TestSyncMessageFilter(base::WaitableEvent* shutdown_event, Worker* worker) : SyncMessageFilter(shutdown_event), worker_(worker), thread_("helper_thread") { base::Thread::Options options; options.message_loop_type = MessageLoop::TYPE_DEFAULT; thread_.StartWithOptions(options); } virtual void OnFilterAdded(Channel* channel) { SyncMessageFilter::OnFilterAdded(channel); thread_.message_loop()->PostTask(FROM_HERE, NewRunnableMethod( this, &TestSyncMessageFilter::SendMessageOnHelperThread)); } void SendMessageOnHelperThread() { int answer = 0; bool result = Send(new SyncChannelTestMsg_AnswerToLife(&answer)); DCHECK(result); DCHECK_EQ(answer, 42); worker_->Done(); } Worker* worker_; base::Thread thread_; }; class SyncMessageFilterServer : public Worker { public: SyncMessageFilterServer() : Worker(Channel::MODE_SERVER, "sync_message_filter_server") { filter_ = new TestSyncMessageFilter(shutdown_event(), this); } void Run() { channel()->AddFilter(filter_.get()); } scoped_refptr filter_; }; } // namespace // Tests basic synchronous call TEST_F(IPCSyncChannelTest, SyncMessageFilter) { std::vector workers; workers.push_back(new SyncMessageFilterServer()); workers.push_back(new SimpleClient()); RunTest(workers); }