// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/sync_socket.h" #include #include #include #include "base/bind.h" #include "base/message_loop.h" #include "base/process_util.h" #include "base/threading/thread.h" #include "ipc/ipc_channel_proxy.h" #include "ipc/ipc_tests.h" #include "testing/gtest/include/gtest/gtest.h" #include "testing/multiprocess_func_list.h" #if defined(OS_POSIX) #include "base/file_descriptor_posix.h" #endif // IPC messages for testing --------------------------------------------------- #define IPC_MESSAGE_IMPL #include "ipc/ipc_message_macros.h" #define IPC_MESSAGE_START TestMsgStart // Message class to pass a base::SyncSocket::Handle to another process. This // is not as easy as it sounds, because of the differences in transferring // Windows HANDLEs versus posix file descriptors. #if defined(OS_WIN) IPC_MESSAGE_CONTROL1(MsgClassSetHandle, base::SyncSocket::Handle) #elif defined(OS_POSIX) IPC_MESSAGE_CONTROL1(MsgClassSetHandle, base::FileDescriptor) #endif // Message class to pass a response to the server. IPC_MESSAGE_CONTROL1(MsgClassResponse, std::string) // Message class to tell the server to shut down. IPC_MESSAGE_CONTROL0(MsgClassShutdown) // ---------------------------------------------------------------------------- namespace { const char kHelloString[] = "Hello, SyncSocket Client"; const size_t kHelloStringLength = arraysize(kHelloString); } // namespace // The SyncSocket server listener class processes two sorts of // messages from the client. class SyncSocketServerListener : public IPC::Channel::Listener { public: SyncSocketServerListener() : chan_(NULL) { } void Init(IPC::Channel* chan) { chan_ = chan; } virtual bool OnMessageReceived(const IPC::Message& msg) { if (msg.routing_id() == MSG_ROUTING_CONTROL) { IPC_BEGIN_MESSAGE_MAP(SyncSocketServerListener, msg) IPC_MESSAGE_HANDLER(MsgClassSetHandle, OnMsgClassSetHandle) IPC_MESSAGE_HANDLER(MsgClassShutdown, OnMsgClassShutdown) IPC_END_MESSAGE_MAP() } return true; } private: // This sort of message is sent first, causing the transfer of // the handle for the SyncSocket. This message sends a buffer // on the SyncSocket and then sends a response to the client. #if defined(OS_WIN) void OnMsgClassSetHandle(const base::SyncSocket::Handle handle) { SetHandle(handle); } #elif defined(OS_POSIX) void OnMsgClassSetHandle(const base::FileDescriptor& fd_struct) { SetHandle(fd_struct.fd); } #else # error "What platform?" #endif // defined(OS_WIN) void SetHandle(base::SyncSocket::Handle handle) { base::SyncSocket sync_socket(handle); EXPECT_EQ(sync_socket.Send(kHelloString, kHelloStringLength), kHelloStringLength); IPC::Message* msg = new MsgClassResponse(kHelloString); EXPECT_TRUE(chan_->Send(msg)); } // When the client responds, it sends back a shutdown message, // which causes the message loop to exit. void OnMsgClassShutdown() { MessageLoop::current()->Quit(); } IPC::Channel* chan_; DISALLOW_COPY_AND_ASSIGN(SyncSocketServerListener); }; // Runs the fuzzing server child mode. Returns when the preset number // of messages have been received. MULTIPROCESS_TEST_MAIN(RunSyncSocketServer) { MessageLoopForIO main_message_loop; SyncSocketServerListener listener; IPC::Channel chan(kSyncSocketChannel, IPC::Channel::MODE_CLIENT, &listener); EXPECT_TRUE(chan.Connect()); listener.Init(&chan); MessageLoop::current()->Run(); return 0; } // The SyncSocket client listener only processes one sort of message, // a response from the server. class SyncSocketClientListener : public IPC::Channel::Listener { public: SyncSocketClientListener() { } void Init(base::SyncSocket* socket, IPC::Channel* chan) { socket_ = socket; chan_ = chan; } virtual bool OnMessageReceived(const IPC::Message& msg) { if (msg.routing_id() == MSG_ROUTING_CONTROL) { IPC_BEGIN_MESSAGE_MAP(SyncSocketClientListener, msg) IPC_MESSAGE_HANDLER(MsgClassResponse, OnMsgClassResponse) IPC_END_MESSAGE_MAP() } return true; } private: // When a response is received from the server, it sends the same // string as was written on the SyncSocket. These are compared // and a shutdown message is sent back to the server. void OnMsgClassResponse(const std::string& str) { // We rely on the order of sync_socket.Send() and chan_->Send() in // the SyncSocketServerListener object. EXPECT_EQ(kHelloStringLength, socket_->Peek()); char buf[kHelloStringLength]; socket_->Receive(static_cast(buf), kHelloStringLength); EXPECT_EQ(strcmp(str.c_str(), buf), 0); // After receiving from the socket there should be no bytes left. EXPECT_EQ(0U, socket_->Peek()); IPC::Message* msg = new MsgClassShutdown(); EXPECT_TRUE(chan_->Send(msg)); MessageLoop::current()->Quit(); } base::SyncSocket* socket_; IPC::Channel* chan_; DISALLOW_COPY_AND_ASSIGN(SyncSocketClientListener); }; class SyncSocketTest : public IPCChannelTest { }; TEST_F(SyncSocketTest, SanityTest) { SyncSocketClientListener listener; IPC::Channel chan(kSyncSocketChannel, IPC::Channel::MODE_SERVER, &listener); base::ProcessHandle server_process = SpawnChild(SYNC_SOCKET_SERVER, &chan); ASSERT_TRUE(server_process); // Create a pair of SyncSockets. base::SyncSocket pair[2]; base::SyncSocket::CreatePair(&pair[0], &pair[1]); // Immediately after creation there should be no pending bytes. EXPECT_EQ(0U, pair[0].Peek()); EXPECT_EQ(0U, pair[1].Peek()); base::SyncSocket::Handle target_handle; // Connect the channel and listener. ASSERT_TRUE(chan.Connect()); listener.Init(&pair[0], &chan); #if defined(OS_WIN) // On windows we need to duplicate the handle into the server process. BOOL retval = DuplicateHandle(GetCurrentProcess(), pair[1].handle(), server_process, &target_handle, 0, FALSE, DUPLICATE_SAME_ACCESS); EXPECT_TRUE(retval); // Set up a message to pass the handle to the server. IPC::Message* msg = new MsgClassSetHandle(target_handle); #else target_handle = pair[1].handle(); // Set up a message to pass the handle to the server. base::FileDescriptor filedesc(target_handle, false); IPC::Message* msg = new MsgClassSetHandle(filedesc); #endif // defined(OS_WIN) EXPECT_TRUE(chan.Send(msg)); // Use the current thread as the I/O thread. MessageLoop::current()->Run(); // Shut down. pair[0].Close(); pair[1].Close(); EXPECT_TRUE(base::WaitForSingleProcess(server_process, 5000)); base::CloseProcessHandle(server_process); } // A blocking read operation that will block the thread until it receives // |length| bytes of packets or Shutdown() is called on another thread. static void BlockingRead(base::SyncSocket* socket, char* buf, size_t length, size_t* received) { DCHECK(buf != NULL); // Notify the parent thread that we're up and running. socket->Send(kHelloString, kHelloStringLength); *received = socket->Receive(buf, length); } // Tests that we can safely end a blocking Receive operation on one thread // from another thread by disconnecting (but not closing) the socket. TEST_F(SyncSocketTest, DisconnectTest) { base::CancelableSyncSocket pair[2]; ASSERT_TRUE(base::CancelableSyncSocket::CreatePair(&pair[0], &pair[1])); base::Thread worker("BlockingThread"); worker.Start(); // Try to do a blocking read from one of the sockets on the worker thread. char buf[0xff]; size_t received = 1U; // Initialize to an unexpected value. worker.message_loop()->PostTask(FROM_HERE, base::Bind(&BlockingRead, &pair[0], &buf[0], arraysize(buf), &received)); // Wait for the worker thread to say hello. char hello[kHelloStringLength] = {0}; pair[1].Receive(&hello[0], sizeof(hello)); EXPECT_EQ(0, strcmp(hello, kHelloString)); // Give the worker a chance to start Receive(). base::PlatformThread::YieldCurrentThread(); // Now shut down the socket that the thread is issuing a blocking read on // which should cause Receive to return with an error. pair[0].Shutdown(); worker.Stop(); EXPECT_EQ(0U, received); } // Tests that read is a blocking operation. TEST_F(SyncSocketTest, BlockingReceiveTest) { base::CancelableSyncSocket pair[2]; ASSERT_TRUE(base::CancelableSyncSocket::CreatePair(&pair[0], &pair[1])); base::Thread worker("BlockingThread"); worker.Start(); // Try to do a blocking read from one of the sockets on the worker thread. char buf[kHelloStringLength] = {0}; size_t received = 1U; // Initialize to an unexpected value. worker.message_loop()->PostTask(FROM_HERE, base::Bind(&BlockingRead, &pair[0], &buf[0], kHelloStringLength, &received)); // Wait for the worker thread to say hello. char hello[kHelloStringLength] = {0}; pair[1].Receive(&hello[0], sizeof(hello)); EXPECT_EQ(0, strcmp(hello, kHelloString)); // Give the worker a chance to start Receive(). base::PlatformThread::YieldCurrentThread(); // Send a message to the socket on the blocking thead, it should free the // socket from Receive(). pair[1].Send(kHelloString, kHelloStringLength); worker.Stop(); // Verify the socket has received the message. EXPECT_TRUE(strcmp(buf, kHelloString) == 0); EXPECT_EQ(kHelloStringLength, received); } // Tests that the write operation is non-blocking and returns immediately // when there is insufficient space in the socket's buffer. TEST_F(SyncSocketTest, NonBlockingWriteTest) { base::CancelableSyncSocket pair[2]; ASSERT_TRUE(base::CancelableSyncSocket::CreatePair(&pair[0], &pair[1])); // Fill up the buffer for one of the socket, Send() should not block the // thread even when the buffer is full. while (pair[0].Send(kHelloString, kHelloStringLength) != 0) {} // Data should be avialble on another socket. size_t bytes_in_buffer = pair[1].Peek(); EXPECT_NE(bytes_in_buffer, 0U); // No more data can be written to the buffer since socket has been full, // verify that the amount of avialble data on another socket is unchanged. EXPECT_EQ(0U, pair[0].Send(kHelloString, kHelloStringLength)); EXPECT_EQ(bytes_in_buffer, pair[1].Peek()); // Read from another socket to free some space for a new write. char hello[kHelloStringLength] = {0}; pair[1].Receive(&hello[0], sizeof(hello)); // Should be able to write more data to the buffer now. EXPECT_EQ(kHelloStringLength, pair[0].Send(kHelloString, kHelloStringLength)); }