// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "media/audio/cross_process_notification.h" #include "base/logging.h" #include "base/memory/scoped_ptr.h" #include "base/threading/platform_thread.h" #include "base/win/scoped_handle.h" CrossProcessNotification::~CrossProcessNotification() {} CrossProcessNotification::CrossProcessNotification(IPCHandle handle_1, IPCHandle handle_2) : mine_(handle_1), other_(handle_2) { DCHECK(IsValid()); } void CrossProcessNotification::Signal() { DCHECK(IsValid()); DCHECK_EQ(::WaitForSingleObject(mine_, 0), static_cast(WAIT_TIMEOUT)) << "Are you calling Signal() without calling Wait() first?"; BOOL ok = ::SetEvent(mine_); CHECK(ok); } void CrossProcessNotification::Wait() { DCHECK(IsValid()); DWORD wait = ::WaitForSingleObject(other_, INFINITE); DCHECK_EQ(wait, WAIT_OBJECT_0); BOOL ok = ::ResetEvent(other_); CHECK(ok); } bool CrossProcessNotification::IsValid() const { return mine_.IsValid() && other_.IsValid(); } bool CrossProcessNotification::ShareToProcess(base::ProcessHandle process, IPCHandle* handle_1, IPCHandle* handle_2) { DCHECK(IsValid()); HANDLE our_process = ::GetCurrentProcess(); if (!::DuplicateHandle(our_process, mine_, process, handle_1, 0, FALSE, DUPLICATE_SAME_ACCESS)) { return false; } if (!::DuplicateHandle(our_process, other_, process, handle_2, 0, FALSE, DUPLICATE_SAME_ACCESS)) { // In case we're sharing to ourselves, we can close the handle, but // if the target process is a different process, we do nothing. if (process == our_process) ::CloseHandle(*handle_1); *handle_1 = NULL; return false; } return true; } // static bool CrossProcessNotification::InitializePair(CrossProcessNotification* a, CrossProcessNotification* b) { DCHECK(!a->IsValid()); DCHECK(!b->IsValid()); bool success = false; // Create two manually resettable events and give each party a handle // to both events. HANDLE event_a = ::CreateEvent(NULL, TRUE, FALSE, NULL); HANDLE event_b = ::CreateEvent(NULL, TRUE, FALSE, NULL); if (event_a && event_b) { a->mine_.Set(event_a); a->other_.Set(event_b); success = a->ShareToProcess(GetCurrentProcess(), &event_a, &event_b); if (success) { b->mine_.Set(event_b); b->other_.Set(event_a); } else { a->mine_.Close(); a->other_.Close(); } } else { if (event_a) ::CloseHandle(event_a); if (event_b) ::CloseHandle(event_b); } DCHECK(!success || a->IsValid()); DCHECK(!success || b->IsValid()); return success; } namespace { class ExtraWaitThread : public base::PlatformThread::Delegate { public: ExtraWaitThread(HANDLE stop, HANDLE* events, size_t count, int* signaled_event) : stop_(stop), events_(events), count_(count), signaled_event_(signaled_event) { *signaled_event_ = -1; } virtual ~ExtraWaitThread() {} virtual void ThreadMain() OVERRIDE { // Store the |stop_| event as the first event. HANDLE events[MAXIMUM_WAIT_OBJECTS] = { stop_ }; HANDLE next_thread = NULL; DWORD event_count = MAXIMUM_WAIT_OBJECTS; int thread_signaled_event = -1; scoped_ptr extra_wait_thread; if (count_ > (MAXIMUM_WAIT_OBJECTS - 1)) { std::copy(&events_[0], &events_[MAXIMUM_WAIT_OBJECTS - 2], &events[1]); extra_wait_thread.reset(new ExtraWaitThread(stop_, &events_[MAXIMUM_WAIT_OBJECTS - 2], count_ - (MAXIMUM_WAIT_OBJECTS - 2), &thread_signaled_event)); base::PlatformThread::Create(0, extra_wait_thread.get(), &next_thread); event_count = MAXIMUM_WAIT_OBJECTS; events[MAXIMUM_WAIT_OBJECTS - 1] = next_thread; } else { std::copy(&events_[0], &events_[count_], &events[1]); event_count = count_ + 1; } DWORD wait = ::WaitForMultipleObjects(event_count, &events[0], FALSE, INFINITE); if (wait >= WAIT_OBJECT_0 && wait < (WAIT_OBJECT_0 + event_count)) { wait -= WAIT_OBJECT_0; if (wait == 0) { // The stop event was signaled. Check if it was signaled by a // sub thread. In case our sub thread had to spin another thread (and // so on), we must wait for ours to exit before we can check the // propagated event offset. if (next_thread) { base::PlatformThread::Join(next_thread); next_thread = NULL; } if (thread_signaled_event != -1) *signaled_event_ = thread_signaled_event + (MAXIMUM_WAIT_OBJECTS - 2); } else if (events[wait] == next_thread) { NOTREACHED(); } else { *signaled_event_ = static_cast(wait); SetEvent(stop_); } } else { NOTREACHED(); } if (next_thread) base::PlatformThread::Join(next_thread); } private: HANDLE stop_; HANDLE* events_; size_t count_; int* signaled_event_; DISALLOW_COPY_AND_ASSIGN(ExtraWaitThread); }; } // end namespace // static int CrossProcessNotification::WaitMultiple(const Notifications& notifications, size_t wait_offset) { DCHECK_LT(wait_offset, notifications.size()); for (size_t i = 0; i < notifications.size(); ++i) { DCHECK(notifications[i]->IsValid()); } // TODO(tommi): Should we wait in an alertable state so that we can be // canceled via an APC? scoped_array handles(new HANDLE[notifications.size()]); // Because of the way WaitForMultipleObjects works, we do a little trick here. // When multiple events are signaled, WaitForMultipleObjects will return the // index of the first signaled item (lowest). This means that if we always // pass the array the same way to WaitForMultipleObjects, the objects that // come first, have higher priority. In times of heavy load, this will cause // elements at the back to become DOS-ed. // So, we store the location of the item that was last signaled. Then we split // up the array and move everything higher than the last signaled index to the // front and the rest to the back (meaning that the last signaled item will // become the last element in the list). // Assuming equally busy events, this approach distributes the priority // evenly. size_t index = 0; for (size_t i = wait_offset; i < notifications.size(); ++i) handles[index++] = notifications[i]->other_; for (size_t i = 0; i < wait_offset; ++i) handles[index++] = notifications[i]->other_; DCHECK_EQ(index, notifications.size()); DWORD wait = WAIT_FAILED; bool wait_failed = false; if (notifications.size() <= MAXIMUM_WAIT_OBJECTS) { wait = ::WaitForMultipleObjects(notifications.size(), &handles[0], FALSE, INFINITE); wait_failed = wait < WAIT_OBJECT_0 || wait >= (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS); } else { // Used to stop the other wait threads when an event has been signaled. base::win::ScopedHandle stop(::CreateEvent(NULL, TRUE, FALSE, NULL)); // Create the first thread and pass a pointer to all handles >63 // to the thread + 'stop'. Then implement the thread so that it checks // if the number of handles is > 63. If so, spawns a new thread and // passes >62 handles to that thread and waits for the 62 handles + stop + // next thread. etc etc. // Create a list of threads so that each thread waits on at most 62 events // including one event for when a child thread signals completion and one // event for when all of the threads must be stopped (due to some event // being signaled). int thread_signaled_event = -1; ExtraWaitThread wait_thread(stop, &handles[MAXIMUM_WAIT_OBJECTS - 1], notifications.size() - (MAXIMUM_WAIT_OBJECTS - 1), &thread_signaled_event); base::PlatformThreadHandle thread; base::PlatformThread::Create(0, &wait_thread, &thread); HANDLE events[MAXIMUM_WAIT_OBJECTS]; std::copy(&handles[0], &handles[MAXIMUM_WAIT_OBJECTS - 1], &events[0]); events[MAXIMUM_WAIT_OBJECTS - 1] = thread; wait = ::WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, &events[0], FALSE, INFINITE); wait_failed = wait < WAIT_OBJECT_0 || wait >= (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS); if (wait == WAIT_OBJECT_0 + (MAXIMUM_WAIT_OBJECTS - 1)) { if (thread_signaled_event < 0) { wait_failed = true; NOTREACHED(); } else { wait = WAIT_OBJECT_0 + (MAXIMUM_WAIT_OBJECTS - 2) + thread_signaled_event; } } else { ::SetEvent(stop); } base::PlatformThread::Join(thread); } int ret = -1; if (!wait_failed) { // Subtract to be politically correct (WAIT_OBJECT_0 is actually 0). wait -= WAIT_OBJECT_0; BOOL ok = ::ResetEvent(handles[wait]); CHECK(ok); ret = (wait + wait_offset) % notifications.size(); DCHECK_EQ(handles[wait], notifications[ret]->other_.Get()); } else { NOTREACHED(); } CHECK_NE(ret, -1); return ret; }