// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // THREAD SAFETY // // AlsaPcmOutputStream object is *not* thread-safe and should only be used // from the audio thread. We DCHECK on this assumption whenever we can. // // SEMANTICS OF Close() // // Close() is responsible for cleaning up any resources that were acquired after // a successful Open(). Close() will nullify any scheduled outstanding runnable // methods. // // // SEMANTICS OF ERROR STATES // // The object has two distinct error states: |state_| == kInError // and |stop_stream_|. The |stop_stream_| variable is used to indicate // that the playback_handle should no longer be used either because of a // hardware/low-level event. // // When |state_| == kInError, all public API functions will fail with an error // (Start() will call the OnError() function on the callback immediately), or // no-op themselves with the exception of Close(). Even if an error state has // been entered, if Open() has previously returned successfully, Close() must be // called to cleanup the ALSA devices and release resources. // // When |stop_stream_| is set, no more commands will be made against the // ALSA device, and playback will effectively stop. From the client's point of // view, it will seem that the device has just clogged and stopped requesting // data. #include "media/audio/linux/alsa_output.h" #include #include "base/bind.h" #include "base/debug/trace_event.h" #include "base/logging.h" #include "base/message_loop.h" #include "base/stl_util.h" #include "base/time.h" #include "media/audio/audio_util.h" #include "media/audio/linux/alsa_util.h" #include "media/audio/linux/alsa_wrapper.h" #include "media/audio/linux/audio_manager_linux.h" #include "media/base/data_buffer.h" #include "media/base/seekable_buffer.h" namespace media { // Amount of time to wait if we've exhausted the data source. This is to avoid // busy looping. static const uint32 kNoDataSleepMilliseconds = 10; // Mininum interval between OnMoreData() calls. This is to avoid glitches for // WebAudio which needs time to generate new data. static const uint32 kMinIntervalBetweenOnMoreDataCallsInMs = 5; // According to the linux nanosleep manpage, nanosleep on linux can miss the // deadline by up to 10ms because the kernel timeslice is 10ms. This should be // enough to compensate for the timeslice, and any additional slowdowns. static const uint32 kSleepErrorMilliseconds = 10; // Set to 0 during debugging if you want error messages due to underrun // events or other recoverable errors. #if defined(NDEBUG) static const int kPcmRecoverIsSilent = 1; #else static const int kPcmRecoverIsSilent = 0; #endif // ALSA is currently limited to 48kHz. // TODO(fbarchard): Resample audio from higher frequency to 48000. static const int kAlsaMaxSampleRate = 48000; // While the "default" device may support multi-channel audio, in Alsa, only // the device names surround40, surround41, surround50, etc, have a defined // channel mapping according to Lennart: // // http://0pointer.de/blog/projects/guide-to-sound-apis.html // // This function makes a best guess at the specific > 2 channel device name // based on the number of channels requested. NULL is returned if no device // can be found to match the channel numbers. In this case, using // kDefaultDevice is probably the best bet. // // A five channel source is assumed to be surround50 instead of surround41 // (which is also 5 channels). // // TODO(ajwong): The source data should have enough info to tell us if we want // surround41 versus surround51, etc., instead of needing us to guess base don // channel number. Fix API to pass that data down. static const char* GuessSpecificDeviceName(uint32 channels) { switch (channels) { case 8: return "surround71"; case 7: return "surround70"; case 6: return "surround51"; case 5: return "surround50"; case 4: return "surround40"; default: return NULL; } } std::ostream& operator<<(std::ostream& os, AlsaPcmOutputStream::InternalState state) { switch (state) { case AlsaPcmOutputStream::kInError: os << "kInError"; break; case AlsaPcmOutputStream::kCreated: os << "kCreated"; break; case AlsaPcmOutputStream::kIsOpened: os << "kIsOpened"; break; case AlsaPcmOutputStream::kIsPlaying: os << "kIsPlaying"; break; case AlsaPcmOutputStream::kIsStopped: os << "kIsStopped"; break; case AlsaPcmOutputStream::kIsClosed: os << "kIsClosed"; break; }; return os; } const char AlsaPcmOutputStream::kDefaultDevice[] = "default"; const char AlsaPcmOutputStream::kAutoSelectDevice[] = ""; const char AlsaPcmOutputStream::kPlugPrefix[] = "plug:"; // We use 40ms as our minimum required latency. If it is needed, we may be able // to get it down to 20ms. const uint32 AlsaPcmOutputStream::kMinLatencyMicros = 40 * 1000; AlsaPcmOutputStream::AlsaPcmOutputStream(const std::string& device_name, const AudioParameters& params, AlsaWrapper* wrapper, AudioManagerLinux* manager) : requested_device_name_(device_name), pcm_format_(alsa_util::BitsToFormat(params.bits_per_sample())), channels_(params.channels()), sample_rate_(params.sample_rate()), bytes_per_sample_(params.bits_per_sample() / 8), bytes_per_frame_(channels_ * params.bits_per_sample() / 8), should_downmix_(false), packet_size_(params.GetBytesPerBuffer()), micros_per_packet_(FramesToMicros( params.frames_per_buffer(), sample_rate_)), latency_micros_(std::max(AlsaPcmOutputStream::kMinLatencyMicros, micros_per_packet_ * 2)), bytes_per_output_frame_(bytes_per_frame_), alsa_buffer_frames_(0), stop_stream_(false), wrapper_(wrapper), manager_(manager), playback_handle_(NULL), frames_per_packet_(packet_size_ / bytes_per_frame_), ALLOW_THIS_IN_INITIALIZER_LIST(weak_factory_(this)), state_(kCreated), volume_(1.0f), source_callback_(NULL) { DCHECK(IsOnAudioThread()); // Sanity check input values. if (params.sample_rate() > kAlsaMaxSampleRate || params.sample_rate() <= 0) { LOG(WARNING) << "Unsupported audio frequency."; TransitionTo(kInError); } if (AudioParameters::AUDIO_PCM_LINEAR != params.format() && AudioParameters::AUDIO_PCM_LOW_LATENCY != params.format()) { LOG(WARNING) << "Unsupported audio format"; TransitionTo(kInError); } if (pcm_format_ == SND_PCM_FORMAT_UNKNOWN) { LOG(WARNING) << "Unsupported bits per sample: " << params.bits_per_sample(); TransitionTo(kInError); } } AlsaPcmOutputStream::~AlsaPcmOutputStream() { InternalState current_state = state(); DCHECK(current_state == kCreated || current_state == kIsClosed || current_state == kInError); DCHECK(!playback_handle_); } bool AlsaPcmOutputStream::Open() { DCHECK(IsOnAudioThread()); if (state() == kInError) return false; if (!CanTransitionTo(kIsOpened)) { NOTREACHED() << "Invalid state: " << state(); return false; } // We do not need to check if the transition was successful because // CanTransitionTo() was checked above, and it is assumed that this // object's public API is only called on one thread so the state cannot // transition out from under us. TransitionTo(kIsOpened); // Try to open the device. if (requested_device_name_ == kAutoSelectDevice) { playback_handle_ = AutoSelectDevice(latency_micros_); if (playback_handle_) DVLOG(1) << "Auto-selected device: " << device_name_; } else { device_name_ = requested_device_name_; playback_handle_ = alsa_util::OpenPlaybackDevice( wrapper_, device_name_.c_str(), channels_, sample_rate_, pcm_format_, latency_micros_); } // Finish initializing the stream if the device was opened successfully. if (playback_handle_ == NULL) { stop_stream_ = true; TransitionTo(kInError); return false; } else { bytes_per_output_frame_ = should_downmix_ ? 2 * bytes_per_sample_ : bytes_per_frame_; uint32 output_packet_size = frames_per_packet_ * bytes_per_output_frame_; buffer_.reset(new media::SeekableBuffer(0, output_packet_size)); // Get alsa buffer size. snd_pcm_uframes_t buffer_size; snd_pcm_uframes_t period_size; int error = wrapper_->PcmGetParams(playback_handle_, &buffer_size, &period_size); if (error < 0) { LOG(ERROR) << "Failed to get playback buffer size from ALSA: " << wrapper_->StrError(error); // Buffer size is at least twice of packet size. alsa_buffer_frames_ = frames_per_packet_ * 2; } else { alsa_buffer_frames_ = buffer_size; } } return true; } void AlsaPcmOutputStream::Close() { DCHECK(IsOnAudioThread()); if (state() != kIsClosed) TransitionTo(kIsClosed); // Shutdown the audio device. if (playback_handle_) { if (alsa_util::CloseDevice(wrapper_, playback_handle_) < 0) { LOG(WARNING) << "Unable to close audio device. Leaking handle."; } playback_handle_ = NULL; // Release the buffer. buffer_.reset(); // Signal anything that might already be scheduled to stop. stop_stream_ = true; // Not necessary in production, but unit tests // uses the flag to verify that stream was closed. } weak_factory_.InvalidateWeakPtrs(); // Signal to the manager that we're closed and can be removed. // Should be last call in the method as it deletes "this". manager_->ReleaseOutputStream(this); } void AlsaPcmOutputStream::Start(AudioSourceCallback* callback) { DCHECK(IsOnAudioThread()); CHECK(callback); if (stop_stream_) return; set_source_callback(callback); // Only post the task if we can enter the playing state. if (TransitionTo(kIsPlaying) == kIsPlaying) { // Before starting, the buffer might have audio from previous user of this // device. buffer_->Clear(); // When starting again, drop all packets in the device and prepare it again // in case we are restarting from a pause state and need to flush old data. int error = wrapper_->PcmDrop(playback_handle_); if (error < 0 && error != -EAGAIN) { LOG(ERROR) << "Failure clearing playback device (" << wrapper_->PcmName(playback_handle_) << "): " << wrapper_->StrError(error); stop_stream_ = true; } else { error = wrapper_->PcmPrepare(playback_handle_); if (error < 0 && error != -EAGAIN) { LOG(ERROR) << "Failure preparing stream (" << wrapper_->PcmName(playback_handle_) << "): " << wrapper_->StrError(error); stop_stream_ = true; } } if (!stop_stream_) WriteTask(); } } void AlsaPcmOutputStream::Stop() { DCHECK(IsOnAudioThread()); // Reset the callback, so that it is not called anymore. set_source_callback(NULL); TransitionTo(kIsStopped); } void AlsaPcmOutputStream::SetVolume(double volume) { DCHECK(IsOnAudioThread()); volume_ = static_cast(volume); } void AlsaPcmOutputStream::GetVolume(double* volume) { DCHECK(IsOnAudioThread()); *volume = volume_; } void AlsaPcmOutputStream::BufferPacket(bool* source_exhausted) { DCHECK(IsOnAudioThread()); // If stopped, simulate a 0-length packet. if (stop_stream_) { buffer_->Clear(); *source_exhausted = true; return; } *source_exhausted = false; // Request more data only when we run out of data in the buffer, because // WritePacket() comsumes only the current chunk of data. if (!buffer_->forward_bytes()) { // Before making a request to source for data we need to determine the // delay (in bytes) for the requested data to be played. uint32 buffer_delay = buffer_->forward_bytes() * bytes_per_frame_ / bytes_per_output_frame_; uint32 hardware_delay = GetCurrentDelay() * bytes_per_frame_; scoped_refptr packet = new media::DataBuffer(packet_size_); int packet_size = RunDataCallback(packet->GetWritableData(), packet->GetBufferSize(), AudioBuffersState(buffer_delay, hardware_delay)); CHECK_LE(packet_size, packet->GetBufferSize()); // Reset the |last_fill_time| to avoid back to back RunDataCallback(). last_fill_time_ = base::Time::Now(); // This should not happen, but in case it does, drop any trailing bytes // that aren't large enough to make a frame. Without this, packet writing // may stall because the last few bytes in the packet may never get used by // WritePacket. DCHECK_EQ(0u, packet_size % bytes_per_frame_); packet_size = (packet_size / bytes_per_frame_) * bytes_per_frame_; if (should_downmix_) { if (media::FoldChannels(packet->GetWritableData(), packet_size, channels_, bytes_per_sample_, volume_)) { // Adjust packet size for downmix. packet_size = packet_size / bytes_per_frame_ * bytes_per_output_frame_; } else { LOG(ERROR) << "Folding failed"; } } else { media::AdjustVolume(packet->GetWritableData(), packet_size, channels_, bytes_per_sample_, volume_); } if (packet_size > 0) { packet->SetDataSize(packet_size); // Add the packet to the buffer. buffer_->Append(packet); } else { *source_exhausted = true; } } } void AlsaPcmOutputStream::WritePacket() { DCHECK(IsOnAudioThread()); // If the device is in error, just eat the bytes. if (stop_stream_) { buffer_->Clear(); return; } if (state() != kIsPlaying) return; CHECK_EQ(buffer_->forward_bytes() % bytes_per_output_frame_, 0u); const uint8* buffer_data; int buffer_size; if (buffer_->GetCurrentChunk(&buffer_data, &buffer_size)) { buffer_size = buffer_size - (buffer_size % bytes_per_output_frame_); snd_pcm_sframes_t frames = std::min( static_cast(buffer_size / bytes_per_output_frame_), GetAvailableFrames()); snd_pcm_sframes_t frames_written = wrapper_->PcmWritei(playback_handle_, buffer_data, frames); if (frames_written < 0) { // Attempt once to immediately recover from EINTR, // EPIPE (overrun/underrun), ESTRPIPE (stream suspended). WritePacket // will eventually be called again, so eventual recovery will happen if // muliple retries are required. frames_written = wrapper_->PcmRecover(playback_handle_, frames_written, kPcmRecoverIsSilent); if (frames_written < 0) { if (frames_written != -EAGAIN) { LOG(ERROR) << "Failed to write to pcm device: " << wrapper_->StrError(frames_written); RunErrorCallback(frames_written); stop_stream_ = true; } } } else { DCHECK_EQ(frames_written, frames); // Seek forward in the buffer after we've written some data to ALSA. buffer_->Seek(frames_written * bytes_per_output_frame_); } } else { // If nothing left to write and playback hasn't started yet, start it now. // This ensures that shorter sounds will still play. if (playback_handle_ && (wrapper_->PcmState(playback_handle_) == SND_PCM_STATE_PREPARED) && GetCurrentDelay() > 0) { wrapper_->PcmStart(playback_handle_); } } } void AlsaPcmOutputStream::WriteTask() { DCHECK(IsOnAudioThread()); if (stop_stream_) return; if (state() == kIsStopped) return; bool source_exhausted; BufferPacket(&source_exhausted); WritePacket(); ScheduleNextWrite(source_exhausted); } void AlsaPcmOutputStream::ScheduleNextWrite(bool source_exhausted) { DCHECK(IsOnAudioThread()); if (stop_stream_) return; const uint32 kTargetFramesAvailable = alsa_buffer_frames_ / 2; uint32 available_frames = GetAvailableFrames(); uint32 frames_in_buffer = buffer_->forward_bytes() / bytes_per_output_frame_; // Next write is initially scheduled for the moment when half of a packet // has been played out. uint32 next_fill_time_ms = FramesToMillis(frames_per_packet_ / 2, sample_rate_); if (frames_in_buffer && available_frames) { // There is data in the current buffer, consume them immediately once we // have enough space in the soundcard. if (frames_in_buffer <= available_frames) next_fill_time_ms = 0; } else { // Otherwise schedule the next write for the moment when the available // buffer of the soundcards hits the |kTargetFramesAvailable|. if (available_frames < kTargetFramesAvailable) { uint32 frames_until_empty_enough = kTargetFramesAvailable - available_frames; next_fill_time_ms = FramesToMillis(frames_until_empty_enough, sample_rate_); // Adjust for the kernel timeslice and any additional slowdown. // TODO(xians): Remove this adjustment if it is not required by // low performance machines any more. if (next_fill_time_ms > kSleepErrorMilliseconds) next_fill_time_ms -= kSleepErrorMilliseconds; else next_fill_time_ms = 0; } else { // The sound card has |kTargetFramesAvailable| or more frames available. // Invoke the next write immediately to avoid underrun. next_fill_time_ms = 0; } // Avoid back-to-back writing. base::TimeDelta delay = base::Time::Now() - last_fill_time_; if (delay.InMilliseconds() < kMinIntervalBetweenOnMoreDataCallsInMs && next_fill_time_ms < kMinIntervalBetweenOnMoreDataCallsInMs) next_fill_time_ms = kMinIntervalBetweenOnMoreDataCallsInMs; } // Avoid busy looping if the data source is exhausted. if (source_exhausted) next_fill_time_ms = std::max(next_fill_time_ms, kNoDataSleepMilliseconds); // Only schedule more reads/writes if we are still in the playing state. if (state() == kIsPlaying) { manager_->GetMessageLoop()->PostDelayedTask( FROM_HERE, base::Bind(&AlsaPcmOutputStream::WriteTask, weak_factory_.GetWeakPtr()), base::TimeDelta::FromMilliseconds(next_fill_time_ms)); } } uint32 AlsaPcmOutputStream::FramesToMicros(uint32 frames, uint32 sample_rate) { return frames * base::Time::kMicrosecondsPerSecond / sample_rate; } uint32 AlsaPcmOutputStream::FramesToMillis(uint32 frames, uint32 sample_rate) { return frames * base::Time::kMillisecondsPerSecond / sample_rate; } std::string AlsaPcmOutputStream::FindDeviceForChannels(uint32 channels) { // Constants specified by the ALSA API for device hints. static const int kGetAllDevices = -1; static const char kPcmInterfaceName[] = "pcm"; static const char kIoHintName[] = "IOID"; static const char kNameHintName[] = "NAME"; const char* wanted_device = GuessSpecificDeviceName(channels); if (!wanted_device) return ""; std::string guessed_device; void** hints = NULL; int error = wrapper_->DeviceNameHint(kGetAllDevices, kPcmInterfaceName, &hints); if (error == 0) { // NOTE: Do not early return from inside this if statement. The // hints above need to be freed. for (void** hint_iter = hints; *hint_iter != NULL; hint_iter++) { // Only examine devices that are output capable.. Valid values are // "Input", "Output", and NULL which means both input and output. scoped_ptr_malloc io( wrapper_->DeviceNameGetHint(*hint_iter, kIoHintName)); if (io != NULL && strcmp(io.get(), "Input") == 0) continue; // Attempt to select the closest device for number of channels. scoped_ptr_malloc name( wrapper_->DeviceNameGetHint(*hint_iter, kNameHintName)); if (strncmp(wanted_device, name.get(), strlen(wanted_device)) == 0) { guessed_device = name.get(); break; } } // Destroy the hint now that we're done with it. wrapper_->DeviceNameFreeHint(hints); hints = NULL; } else { LOG(ERROR) << "Unable to get hints for devices: " << wrapper_->StrError(error); } return guessed_device; } snd_pcm_sframes_t AlsaPcmOutputStream::GetCurrentDelay() { snd_pcm_sframes_t delay = -1; // Don't query ALSA's delay if we have underrun since it'll be jammed at some // non-zero value and potentially even negative! // // Also, if we're in the prepared state, don't query because that seems to // cause an I/O error when we do query the delay. snd_pcm_state_t pcm_state = wrapper_->PcmState(playback_handle_); if (pcm_state != SND_PCM_STATE_XRUN && pcm_state != SND_PCM_STATE_PREPARED) { int error = wrapper_->PcmDelay(playback_handle_, &delay); if (error < 0) { // Assume a delay of zero and attempt to recover the device. delay = -1; error = wrapper_->PcmRecover(playback_handle_, error, kPcmRecoverIsSilent); if (error < 0) { LOG(ERROR) << "Failed querying delay: " << wrapper_->StrError(error); } } } // snd_pcm_delay() may not work in the beginning of the stream. In this case // return delay of data we know currently is in the ALSA's buffer. if (delay < 0) delay = alsa_buffer_frames_ - GetAvailableFrames(); return delay; } snd_pcm_sframes_t AlsaPcmOutputStream::GetAvailableFrames() { DCHECK(IsOnAudioThread()); if (stop_stream_) return 0; // Find the number of frames queued in the sound device. snd_pcm_sframes_t available_frames = wrapper_->PcmAvailUpdate(playback_handle_); if (available_frames < 0) { available_frames = wrapper_->PcmRecover(playback_handle_, available_frames, kPcmRecoverIsSilent); } if (available_frames < 0) { LOG(ERROR) << "Failed querying available frames. Assuming 0: " << wrapper_->StrError(available_frames); return 0; } if (static_cast(available_frames) > alsa_buffer_frames_) { LOG(ERROR) << "ALSA returned " << available_frames << " of " << alsa_buffer_frames_ << " frames available."; return alsa_buffer_frames_; } return available_frames; } snd_pcm_t* AlsaPcmOutputStream::AutoSelectDevice(unsigned int latency) { // For auto-selection: // 1) Attempt to open a device that best matches the number of channels // requested. // 2) If that fails, attempt the "plug:" version of it in case ALSA can // remap do some software conversion to make it work. // 3) Fallback to kDefaultDevice. // 4) If that fails too, try the "plug:" version of kDefaultDevice. // 5) Give up. snd_pcm_t* handle = NULL; device_name_ = FindDeviceForChannels(channels_); // Step 1. if (!device_name_.empty()) { if ((handle = alsa_util::OpenPlaybackDevice(wrapper_, device_name_.c_str(), channels_, sample_rate_, pcm_format_, latency)) != NULL) { return handle; } // Step 2. device_name_ = kPlugPrefix + device_name_; if ((handle = alsa_util::OpenPlaybackDevice(wrapper_, device_name_.c_str(), channels_, sample_rate_, pcm_format_, latency)) != NULL) { return handle; } } // For the kDefaultDevice device, we can only reliably depend on 2-channel // output to have the correct ordering according to Lennart. For the channel // formats that we know how to downmix from (3 channel to 8 channel), setup // downmixing. // // TODO(ajwong): We need a SupportsFolding() function. uint32 default_channels = channels_; if (default_channels > 2 && default_channels <= 8) { should_downmix_ = true; default_channels = 2; } // Step 3. device_name_ = kDefaultDevice; if ((handle = alsa_util::OpenPlaybackDevice( wrapper_, device_name_.c_str(), default_channels, sample_rate_, pcm_format_, latency)) != NULL) { return handle; } // Step 4. device_name_ = kPlugPrefix + device_name_; if ((handle = alsa_util::OpenPlaybackDevice( wrapper_, device_name_.c_str(), default_channels, sample_rate_, pcm_format_, latency)) != NULL) { return handle; } // Unable to open any device. device_name_.clear(); return NULL; } bool AlsaPcmOutputStream::CanTransitionTo(InternalState to) { switch (state_) { case kCreated: return to == kIsOpened || to == kIsClosed || to == kInError; case kIsOpened: return to == kIsPlaying || to == kIsStopped || to == kIsClosed || to == kInError; case kIsPlaying: return to == kIsPlaying || to == kIsStopped || to == kIsClosed || to == kInError; case kIsStopped: return to == kIsPlaying || to == kIsStopped || to == kIsClosed || to == kInError; case kInError: return to == kIsClosed || to == kInError; case kIsClosed: default: return false; } } AlsaPcmOutputStream::InternalState AlsaPcmOutputStream::TransitionTo(InternalState to) { DCHECK(IsOnAudioThread()); if (!CanTransitionTo(to)) { NOTREACHED() << "Cannot transition from: " << state_ << " to: " << to; state_ = kInError; } else { state_ = to; } return state_; } AlsaPcmOutputStream::InternalState AlsaPcmOutputStream::state() { return state_; } bool AlsaPcmOutputStream::IsOnAudioThread() const { return !manager_->GetMessageLoop() || manager_->GetMessageLoop()->BelongsToCurrentThread(); } uint32 AlsaPcmOutputStream::RunDataCallback(uint8* dest, uint32 max_size, AudioBuffersState buffers_state) { TRACE_EVENT0("audio", "AlsaPcmOutputStream::RunDataCallback"); if (source_callback_) return source_callback_->OnMoreData(dest, max_size, buffers_state); return 0; } void AlsaPcmOutputStream::RunErrorCallback(int code) { if (source_callback_) source_callback_->OnError(this, code); } // Changes the AudioSourceCallback to proxy calls to. Pass in NULL to // release ownership of the currently registered callback. void AlsaPcmOutputStream::set_source_callback(AudioSourceCallback* callback) { DCHECK(IsOnAudioThread()); source_callback_ = callback; } } // namespace media