// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "media/base/audio_buffer.h" #include "base/logging.h" #include "media/base/audio_bus.h" #include "media/base/buffers.h" #include "media/base/limits.h" namespace media { static base::TimeDelta CalculateDuration(int frames, double sample_rate) { DCHECK_GT(sample_rate, 0); return base::TimeDelta::FromMicroseconds( frames * base::Time::kMicrosecondsPerSecond / sample_rate); } AudioBuffer::AudioBuffer(SampleFormat sample_format, ChannelLayout channel_layout, int channel_count, int sample_rate, int frame_count, bool create_buffer, const uint8* const* data, const base::TimeDelta timestamp) : sample_format_(sample_format), channel_layout_(channel_layout), channel_count_(channel_count), sample_rate_(sample_rate), adjusted_frame_count_(frame_count), trim_start_(0), end_of_stream_(!create_buffer && data == NULL && frame_count == 0), timestamp_(timestamp), duration_(end_of_stream_ ? base::TimeDelta() : CalculateDuration(adjusted_frame_count_, sample_rate_)) { CHECK_GE(channel_count_, 0); CHECK_LE(channel_count_, limits::kMaxChannels); CHECK_GE(frame_count, 0); DCHECK(channel_layout == CHANNEL_LAYOUT_DISCRETE || ChannelLayoutToChannelCount(channel_layout) == channel_count); int bytes_per_channel = SampleFormatToBytesPerChannel(sample_format); DCHECK_LE(bytes_per_channel, kChannelAlignment); int data_size = frame_count * bytes_per_channel; // Empty buffer? if (!create_buffer) return; if (sample_format == kSampleFormatPlanarF32 || sample_format == kSampleFormatPlanarS16) { // Planar data, so need to allocate buffer for each channel. // Determine per channel data size, taking into account alignment. int block_size_per_channel = (data_size + kChannelAlignment - 1) & ~(kChannelAlignment - 1); DCHECK_GE(block_size_per_channel, data_size); // Allocate a contiguous buffer for all the channel data. data_.reset(static_cast(base::AlignedAlloc( channel_count_ * block_size_per_channel, kChannelAlignment))); channel_data_.reserve(channel_count_); // Copy each channel's data into the appropriate spot. for (int i = 0; i < channel_count_; ++i) { channel_data_.push_back(data_.get() + i * block_size_per_channel); if (data) memcpy(channel_data_[i], data[i], data_size); } return; } // Remaining formats are interleaved data. DCHECK(sample_format_ == kSampleFormatU8 || sample_format_ == kSampleFormatS16 || sample_format_ == kSampleFormatS32 || sample_format_ == kSampleFormatF32) << sample_format_; // Allocate our own buffer and copy the supplied data into it. Buffer must // contain the data for all channels. data_size *= channel_count_; data_.reset( static_cast(base::AlignedAlloc(data_size, kChannelAlignment))); channel_data_.reserve(1); channel_data_.push_back(data_.get()); if (data) memcpy(data_.get(), data[0], data_size); } AudioBuffer::~AudioBuffer() {} // static scoped_refptr AudioBuffer::CopyFrom( SampleFormat sample_format, ChannelLayout channel_layout, int channel_count, int sample_rate, int frame_count, const uint8* const* data, const base::TimeDelta timestamp) { // If you hit this CHECK you likely have a bug in a demuxer. Go fix it. CHECK_GT(frame_count, 0); // Otherwise looks like an EOF buffer. CHECK(data[0]); return make_scoped_refptr(new AudioBuffer(sample_format, channel_layout, channel_count, sample_rate, frame_count, true, data, timestamp)); } // static scoped_refptr AudioBuffer::CreateBuffer( SampleFormat sample_format, ChannelLayout channel_layout, int channel_count, int sample_rate, int frame_count) { CHECK_GT(frame_count, 0); // Otherwise looks like an EOF buffer. return make_scoped_refptr(new AudioBuffer(sample_format, channel_layout, channel_count, sample_rate, frame_count, true, NULL, kNoTimestamp())); } // static scoped_refptr AudioBuffer::CreateEmptyBuffer( ChannelLayout channel_layout, int channel_count, int sample_rate, int frame_count, const base::TimeDelta timestamp) { CHECK_GT(frame_count, 0); // Otherwise looks like an EOF buffer. // Since data == NULL, format doesn't matter. return make_scoped_refptr(new AudioBuffer(kSampleFormatF32, channel_layout, channel_count, sample_rate, frame_count, false, NULL, timestamp)); } // static scoped_refptr AudioBuffer::CreateEOSBuffer() { return make_scoped_refptr(new AudioBuffer(kUnknownSampleFormat, CHANNEL_LAYOUT_NONE, 0, 0, 0, false, NULL, kNoTimestamp())); } // Convert int16 values in the range [kint16min, kint16max] to [-1.0, 1.0]. static inline float ConvertS16ToFloat(int16 value) { return value * (value < 0 ? -1.0f / kint16min : 1.0f / kint16max); } void AudioBuffer::ReadFrames(int frames_to_copy, int source_frame_offset, int dest_frame_offset, AudioBus* dest) { // Deinterleave each channel (if necessary) and convert to 32bit // floating-point with nominal range -1.0 -> +1.0 (if necessary). // |dest| must have the same number of channels, and the number of frames // specified must be in range. DCHECK(!end_of_stream()); DCHECK_EQ(dest->channels(), channel_count_); DCHECK_LE(source_frame_offset + frames_to_copy, adjusted_frame_count_); DCHECK_LE(dest_frame_offset + frames_to_copy, dest->frames()); // Move the start past any frames that have been trimmed. source_frame_offset += trim_start_; if (!data_) { // Special case for an empty buffer. dest->ZeroFramesPartial(dest_frame_offset, frames_to_copy); return; } if (sample_format_ == kSampleFormatPlanarF32) { // Format is planar float32. Copy the data from each channel as a block. for (int ch = 0; ch < channel_count_; ++ch) { const float* source_data = reinterpret_cast(channel_data_[ch]) + source_frame_offset; memcpy(dest->channel(ch) + dest_frame_offset, source_data, sizeof(float) * frames_to_copy); } return; } if (sample_format_ == kSampleFormatPlanarS16) { // Format is planar signed16. Convert each value into float and insert into // output channel data. for (int ch = 0; ch < channel_count_; ++ch) { const int16* source_data = reinterpret_cast(channel_data_[ch]) + source_frame_offset; float* dest_data = dest->channel(ch) + dest_frame_offset; for (int i = 0; i < frames_to_copy; ++i) { dest_data[i] = ConvertS16ToFloat(source_data[i]); } } return; } if (sample_format_ == kSampleFormatF32) { // Format is interleaved float32. Copy the data into each channel. const float* source_data = reinterpret_cast(data_.get()) + source_frame_offset * channel_count_; for (int ch = 0; ch < channel_count_; ++ch) { float* dest_data = dest->channel(ch) + dest_frame_offset; for (int i = 0, offset = ch; i < frames_to_copy; ++i, offset += channel_count_) { dest_data[i] = source_data[offset]; } } return; } // Remaining formats are integer interleaved data. Use the deinterleaving code // in AudioBus to copy the data. DCHECK(sample_format_ == kSampleFormatU8 || sample_format_ == kSampleFormatS16 || sample_format_ == kSampleFormatS32); int bytes_per_channel = SampleFormatToBytesPerChannel(sample_format_); int frame_size = channel_count_ * bytes_per_channel; const uint8* source_data = data_.get() + source_frame_offset * frame_size; dest->FromInterleavedPartial( source_data, dest_frame_offset, frames_to_copy, bytes_per_channel); } static inline int32 ConvertS16ToS32(int16 value) { return static_cast(value) << 16; } static inline int32 ConvertF32ToS32(float value) { return static_cast(value < 0 ? (-value) * std::numeric_limits::min() : value * std::numeric_limits::max()); } template void InterleaveToS32(const std::vector& channel_data, size_t frames_to_copy, int trim_start, int32* dest_data, Converter convert_func) { for (size_t ch = 0; ch < channel_data.size(); ++ch) { const Target* source_data = reinterpret_cast(channel_data[ch]) + trim_start; for (size_t i = 0, offset = ch; i < frames_to_copy; ++i, offset += channel_data.size()) { dest_data[offset] = convert_func(source_data[i]); } } } void AudioBuffer::ReadFramesInterleavedS32(int frames_to_copy, int32* dest_data) { DCHECK_LE(frames_to_copy, adjusted_frame_count_); switch (sample_format_) { case kSampleFormatU8: NOTIMPLEMENTED(); break; case kSampleFormatS16: // Format is interleaved signed16. Convert each value into int32 and // insert into output channel data. InterleaveToS32(channel_data_, frames_to_copy * channel_count_, trim_start_, dest_data, ConvertS16ToS32); break; case kSampleFormatS32: { // Format is interleaved signed32; just copy the data. const int32* source_data = reinterpret_cast(channel_data_[0]) + trim_start_; memcpy(dest_data, source_data, frames_to_copy * channel_count_ * sizeof(int32)); } break; case kSampleFormatF32: // Format is interleaved float. Convert each value into int32 and insert // into output channel data. InterleaveToS32(channel_data_, frames_to_copy * channel_count_, trim_start_, dest_data, ConvertF32ToS32); break; case kSampleFormatPlanarS16: // Format is planar signed 16 bit. Convert each value into int32 and // insert into output channel data. InterleaveToS32(channel_data_, frames_to_copy, trim_start_, dest_data, ConvertS16ToS32); break; case kSampleFormatPlanarF32: // Format is planar float. Convert each value into int32 and insert into // output channel data. InterleaveToS32(channel_data_, frames_to_copy, trim_start_, dest_data, ConvertF32ToS32); break; case kUnknownSampleFormat: NOTREACHED(); break; } } void AudioBuffer::TrimStart(int frames_to_trim) { CHECK_GE(frames_to_trim, 0); CHECK_LE(frames_to_trim, adjusted_frame_count_); // Adjust the number of frames in this buffer and where the start really is. adjusted_frame_count_ -= frames_to_trim; trim_start_ += frames_to_trim; // Adjust timestamp_ and duration_ to reflect the smaller number of frames. const base::TimeDelta old_duration = duration_; duration_ = CalculateDuration(adjusted_frame_count_, sample_rate_); timestamp_ += old_duration - duration_; } void AudioBuffer::TrimEnd(int frames_to_trim) { CHECK_GE(frames_to_trim, 0); CHECK_LE(frames_to_trim, adjusted_frame_count_); // Adjust the number of frames and duration for this buffer. adjusted_frame_count_ -= frames_to_trim; duration_ = CalculateDuration(adjusted_frame_count_, sample_rate_); } void AudioBuffer::TrimRange(int start, int end) { CHECK_GE(start, 0); CHECK_LE(end, adjusted_frame_count_); const int frames_to_trim = end - start; CHECK_GE(frames_to_trim, 0); CHECK_LE(frames_to_trim, adjusted_frame_count_); const int bytes_per_channel = SampleFormatToBytesPerChannel(sample_format_); const int frames_to_copy = adjusted_frame_count_ - end; if (frames_to_copy > 0) { switch (sample_format_) { case kSampleFormatPlanarS16: case kSampleFormatPlanarF32: // Planar data must be shifted per channel. for (int ch = 0; ch < channel_count_; ++ch) { memmove(channel_data_[ch] + (trim_start_ + start) * bytes_per_channel, channel_data_[ch] + (trim_start_ + end) * bytes_per_channel, bytes_per_channel * frames_to_copy); } break; case kSampleFormatU8: case kSampleFormatS16: case kSampleFormatS32: case kSampleFormatF32: { // Interleaved data can be shifted all at once. const int frame_size = channel_count_ * bytes_per_channel; memmove(channel_data_[0] + (trim_start_ + start) * frame_size, channel_data_[0] + (trim_start_ + end) * frame_size, frame_size * frames_to_copy); break; } case kUnknownSampleFormat: NOTREACHED() << "Invalid sample format!"; } } else { CHECK_EQ(frames_to_copy, 0); } // Trim the leftover data off the end of the buffer and update duration. TrimEnd(frames_to_trim); } } // namespace media