// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/strings/stringprintf.h" #include "base/time/time.h" #include "build/build_config.h" #include "media/audio/audio_parameters.h" #include "media/base/audio_bus.h" #include "media/base/channel_layout.h" #include "media/base/fake_audio_render_callback.h" #include "testing/gtest/include/gtest/gtest.h" namespace media { static const int kChannels = 6; static const ChannelLayout kChannelLayout = CHANNEL_LAYOUT_5_1; // Use a buffer size which is intentionally not a multiple of kChannelAlignment. static const int kFrameCount = media::AudioBus::kChannelAlignment * 32 - 1; static const int kSampleRate = 48000; class AudioBusTest : public testing::Test { public: AudioBusTest() {} virtual ~AudioBusTest() { for (size_t i = 0; i < data_.size(); ++i) base::AlignedFree(data_[i]); } // Validate parameters returned by AudioBus v.s. the constructed parameters. void VerifyParams(AudioBus* bus) { EXPECT_EQ(kChannels, bus->channels()); EXPECT_EQ(kFrameCount, bus->frames()); } void VerifyValue(const float data[], int size, float value) { for (int i = 0; i < size; ++i) ASSERT_FLOAT_EQ(value, data[i]) << "i=" << i; } // Verify values for each channel in |result| are within |epsilon| of // |expected|. If |epsilon| exactly equals 0, uses FLOAT_EQ macro. void VerifyBusWithEpsilon(const AudioBus* result, const AudioBus* expected, float epsilon) { ASSERT_EQ(expected->channels(), result->channels()); ASSERT_EQ(expected->frames(), result->frames()); for (int ch = 0; ch < result->channels(); ++ch) { for (int i = 0; i < result->frames(); ++i) { SCOPED_TRACE(base::StringPrintf("ch=%d, i=%d", ch, i)); if (epsilon == 0) { ASSERT_FLOAT_EQ(expected->channel(ch)[i], result->channel(ch)[i]); } else { ASSERT_NEAR(expected->channel(ch)[i], result->channel(ch)[i], epsilon); } } } } // Verify values for each channel in |result| against |expected|. void VerifyBus(const AudioBus* result, const AudioBus* expected) { VerifyBusWithEpsilon(result, expected, 0); } // Read and write to the full extent of the allocated channel data. Also test // the Zero() method and verify it does as advertised. Also test data if data // is 16-byte aligned as advertised (see kChannelAlignment in audio_bus.h). void VerifyChannelData(AudioBus* bus) { for (int i = 0; i < bus->channels(); ++i) { ASSERT_EQ(0U, reinterpret_cast( bus->channel(i)) & (AudioBus::kChannelAlignment - 1)); std::fill(bus->channel(i), bus->channel(i) + bus->frames(), i); } for (int i = 0; i < bus->channels(); ++i) VerifyValue(bus->channel(i), bus->frames(), i); bus->Zero(); for (int i = 0; i < bus->channels(); ++i) VerifyValue(bus->channel(i), bus->frames(), 0); } // Verify copying to and from |bus1| and |bus2|. void CopyTest(AudioBus* bus1, AudioBus* bus2) { // Fill |bus1| with dummy data. for (int i = 0; i < bus1->channels(); ++i) std::fill(bus1->channel(i), bus1->channel(i) + bus1->frames(), i); // Verify copy from |bus1| to |bus2|. bus2->Zero(); bus1->CopyTo(bus2); VerifyBus(bus1, bus2); // Verify copy from |bus2| to |bus1|. bus1->Zero(); bus2->CopyTo(bus1); VerifyBus(bus2, bus1); } protected: std::vector data_; DISALLOW_COPY_AND_ASSIGN(AudioBusTest); }; // Verify basic Create(...) method works as advertised. TEST_F(AudioBusTest, Create) { scoped_ptr bus = AudioBus::Create(kChannels, kFrameCount); VerifyParams(bus.get()); VerifyChannelData(bus.get()); } // Verify Create(...) using AudioParameters works as advertised. TEST_F(AudioBusTest, CreateUsingAudioParameters) { scoped_ptr bus = AudioBus::Create(AudioParameters( AudioParameters::AUDIO_PCM_LINEAR, kChannelLayout, kSampleRate, 32, kFrameCount)); VerifyParams(bus.get()); VerifyChannelData(bus.get()); } // Verify an AudioBus created via wrapping a vector works as advertised. TEST_F(AudioBusTest, WrapVector) { data_.reserve(kChannels); for (int i = 0; i < kChannels; ++i) { data_.push_back(static_cast(base::AlignedAlloc( sizeof(*data_[i]) * kFrameCount, AudioBus::kChannelAlignment))); } scoped_ptr bus = AudioBus::WrapVector(kFrameCount, data_); VerifyParams(bus.get()); VerifyChannelData(bus.get()); } // Verify an AudioBus created via wrapping a memory block works as advertised. TEST_F(AudioBusTest, WrapMemory) { AudioParameters params( AudioParameters::AUDIO_PCM_LINEAR, kChannelLayout, kSampleRate, 32, kFrameCount); int data_size = AudioBus::CalculateMemorySize(params); scoped_ptr_malloc data(static_cast( base::AlignedAlloc(data_size, AudioBus::kChannelAlignment))); // Fill the memory with a test value we can check for after wrapping. static const float kTestValue = 3; std::fill( data.get(), data.get() + data_size / sizeof(*data.get()), kTestValue); scoped_ptr bus = AudioBus::WrapMemory(params, data.get()); // Verify the test value we filled prior to wrapping. for (int i = 0; i < bus->channels(); ++i) VerifyValue(bus->channel(i), bus->frames(), kTestValue); VerifyParams(bus.get()); VerifyChannelData(bus.get()); // Verify the channel vectors lie within the provided memory block. EXPECT_GE(bus->channel(0), data.get()); EXPECT_LT(bus->channel(bus->channels() - 1) + bus->frames(), data.get() + data_size / sizeof(*data.get())); } // Simulate a shared memory transfer and verify results. TEST_F(AudioBusTest, CopyTo) { // Create one bus with AudioParameters and the other through direct values to // test for parity between the Create() functions. AudioParameters params( AudioParameters::AUDIO_PCM_LINEAR, kChannelLayout, kSampleRate, 32, kFrameCount); scoped_ptr bus1 = AudioBus::Create(kChannels, kFrameCount); scoped_ptr bus2 = AudioBus::Create(params); { SCOPED_TRACE("Created"); CopyTest(bus1.get(), bus2.get()); } { SCOPED_TRACE("Wrapped Vector"); // Try a copy to an AudioBus wrapping a vector. data_.reserve(kChannels); for (int i = 0; i < kChannels; ++i) { data_.push_back(static_cast(base::AlignedAlloc( sizeof(*data_[i]) * kFrameCount, AudioBus::kChannelAlignment))); } bus2 = AudioBus::WrapVector(kFrameCount, data_); CopyTest(bus1.get(), bus2.get()); } { SCOPED_TRACE("Wrapped Memory"); // Try a copy to an AudioBus wrapping a memory block. scoped_ptr_malloc data( static_cast(base::AlignedAlloc( AudioBus::CalculateMemorySize(params), AudioBus::kChannelAlignment))); bus2 = AudioBus::WrapMemory(params, data.get()); CopyTest(bus1.get(), bus2.get()); } } // Verify Zero() and ZeroFrames(...) utility methods work as advertised. TEST_F(AudioBusTest, Zero) { scoped_ptr bus = AudioBus::Create(kChannels, kFrameCount); // Fill the bus with dummy data. for (int i = 0; i < bus->channels(); ++i) std::fill(bus->channel(i), bus->channel(i) + bus->frames(), i + 1); // Zero first half the frames of each channel. bus->ZeroFrames(kFrameCount / 2); for (int i = 0; i < bus->channels(); ++i) { SCOPED_TRACE("First Half Zero"); VerifyValue(bus->channel(i), kFrameCount / 2, 0); VerifyValue(bus->channel(i) + kFrameCount / 2, kFrameCount - kFrameCount / 2, i + 1); } // Fill the bus with dummy data. for (int i = 0; i < bus->channels(); ++i) std::fill(bus->channel(i), bus->channel(i) + bus->frames(), i + 1); // Zero the last half of the frames. bus->ZeroFramesPartial(kFrameCount / 2, kFrameCount - kFrameCount / 2); for (int i = 0; i < bus->channels(); ++i) { SCOPED_TRACE("Last Half Zero"); VerifyValue(bus->channel(i) + kFrameCount / 2, kFrameCount - kFrameCount / 2, 0); VerifyValue(bus->channel(i), kFrameCount / 2, i + 1); } // Fill the bus with dummy data. for (int i = 0; i < bus->channels(); ++i) std::fill(bus->channel(i), bus->channel(i) + bus->frames(), i + 1); // Zero all the frames of each channel. bus->Zero(); for (int i = 0; i < bus->channels(); ++i) { SCOPED_TRACE("All Zero"); VerifyValue(bus->channel(i), bus->frames(), 0); } } // Each test vector represents two channels of data in the following arbitrary // layout: . static const int kTestVectorSize = 10; static const uint8 kTestVectorUint8[kTestVectorSize] = { 0, -kint8min, kuint8max, 0, kint8max / 2 + 128, kint8min / 2 + 128, -kint8min, kuint8max, -kint8min, -kint8min }; static const int16 kTestVectorInt16[kTestVectorSize] = { kint16min, 0, kint16max, kint16min, kint16max / 2, kint16min / 2, 0, kint16max, 0, 0 }; static const int32 kTestVectorInt32[kTestVectorSize] = { kint32min, 0, kint32max, kint32min, kint32max / 2, kint32min / 2, 0, kint32max, 0, 0 }; // Expected results. static const int kTestVectorFrames = kTestVectorSize / 2; static const float kTestVectorResult[][kTestVectorFrames] = { { -1, 1, 0.5, 0, 0 }, { 0, -1, -0.5, 1, 0 }}; static const int kTestVectorChannels = arraysize(kTestVectorResult); // Verify FromInterleaved() deinterleaves audio in supported formats correctly. TEST_F(AudioBusTest, FromInterleaved) { scoped_ptr bus = AudioBus::Create( kTestVectorChannels, kTestVectorFrames); scoped_ptr expected = AudioBus::Create( kTestVectorChannels, kTestVectorFrames); for (int ch = 0; ch < kTestVectorChannels; ++ch) { memcpy(expected->channel(ch), kTestVectorResult[ch], kTestVectorFrames * sizeof(*expected->channel(ch))); } { SCOPED_TRACE("uint8"); bus->Zero(); bus->FromInterleaved( kTestVectorUint8, kTestVectorFrames, sizeof(*kTestVectorUint8)); // Biased uint8 calculations have poor precision, so the epsilon here is // slightly more permissive than int16 and int32 calculations. VerifyBusWithEpsilon(bus.get(), expected.get(), 1.0f / (kuint8max - 1)); } { SCOPED_TRACE("int16"); bus->Zero(); bus->FromInterleaved( kTestVectorInt16, kTestVectorFrames, sizeof(*kTestVectorInt16)); VerifyBusWithEpsilon(bus.get(), expected.get(), 1.0f / (kuint16max + 1.0f)); } { SCOPED_TRACE("int32"); bus->Zero(); bus->FromInterleaved( kTestVectorInt32, kTestVectorFrames, sizeof(*kTestVectorInt32)); VerifyBusWithEpsilon(bus.get(), expected.get(), 1.0f / (kuint32max + 1.0f)); } } // Verify FromInterleavedPartial() deinterleaves audio correctly. TEST_F(AudioBusTest, FromInterleavedPartial) { // Only deinterleave the middle two frames in each channel. static const int kPartialStart = 1; static const int kPartialFrames = 2; ASSERT_LE(kPartialStart + kPartialFrames, kTestVectorFrames); scoped_ptr bus = AudioBus::Create( kTestVectorChannels, kTestVectorFrames); scoped_ptr expected = AudioBus::Create( kTestVectorChannels, kTestVectorFrames); expected->Zero(); for (int ch = 0; ch < kTestVectorChannels; ++ch) { memcpy(expected->channel(ch) + kPartialStart, kTestVectorResult[ch] + kPartialStart, kPartialFrames * sizeof(*expected->channel(ch))); } bus->Zero(); bus->FromInterleavedPartial( kTestVectorInt32 + kPartialStart * bus->channels(), kPartialStart, kPartialFrames, sizeof(*kTestVectorInt32)); VerifyBus(bus.get(), expected.get()); } // Verify ToInterleaved() interleaves audio in suported formats correctly. TEST_F(AudioBusTest, ToInterleaved) { scoped_ptr bus = AudioBus::Create( kTestVectorChannels, kTestVectorFrames); // Fill the bus with our test vector. for (int ch = 0; ch < bus->channels(); ++ch) { memcpy(bus->channel(ch), kTestVectorResult[ch], kTestVectorFrames * sizeof(*bus->channel(ch))); } { SCOPED_TRACE("uint8"); uint8 test_array[arraysize(kTestVectorUint8)]; bus->ToInterleaved(bus->frames(), sizeof(*kTestVectorUint8), test_array); ASSERT_EQ(memcmp( test_array, kTestVectorUint8, sizeof(kTestVectorUint8)), 0); } { SCOPED_TRACE("int16"); int16 test_array[arraysize(kTestVectorInt16)]; bus->ToInterleaved(bus->frames(), sizeof(*kTestVectorInt16), test_array); ASSERT_EQ(memcmp( test_array, kTestVectorInt16, sizeof(kTestVectorInt16)), 0); } { SCOPED_TRACE("int32"); int32 test_array[arraysize(kTestVectorInt32)]; bus->ToInterleaved(bus->frames(), sizeof(*kTestVectorInt32), test_array); // Some compilers get better precision than others on the half-max test, so // let the test pass with an off by one check on the half-max. int32 fixed_test_array[arraysize(kTestVectorInt32)]; memcpy(fixed_test_array, kTestVectorInt32, sizeof(kTestVectorInt32)); ASSERT_EQ(fixed_test_array[4], kint32max / 2); fixed_test_array[4]++; ASSERT_TRUE( memcmp(test_array, kTestVectorInt32, sizeof(kTestVectorInt32)) == 0 || memcmp(test_array, fixed_test_array, sizeof(fixed_test_array)) == 0); } } // Verify ToInterleavedPartial() interleaves audio correctly. TEST_F(AudioBusTest, ToInterleavedPartial) { // Only interleave the middle two frames in each channel. static const int kPartialStart = 1; static const int kPartialFrames = 2; ASSERT_LE(kPartialStart + kPartialFrames, kTestVectorFrames); scoped_ptr expected = AudioBus::Create( kTestVectorChannels, kTestVectorFrames); for (int ch = 0; ch < kTestVectorChannels; ++ch) { memcpy(expected->channel(ch), kTestVectorResult[ch], kTestVectorFrames * sizeof(*expected->channel(ch))); } int16 test_array[arraysize(kTestVectorInt16)]; expected->ToInterleavedPartial( kPartialStart, kPartialFrames, sizeof(*kTestVectorInt16), test_array); ASSERT_EQ(memcmp( test_array, kTestVectorInt16 + kPartialStart * kTestVectorChannels, kPartialFrames * sizeof(*kTestVectorInt16) * kTestVectorChannels), 0); } TEST_F(AudioBusTest, Scale) { scoped_ptr bus = AudioBus::Create(kChannels, kFrameCount); // Fill the bus with dummy data. static const float kFillValue = 1; for (int i = 0; i < bus->channels(); ++i) std::fill(bus->channel(i), bus->channel(i) + bus->frames(), kFillValue); // Adjust by an invalid volume and ensure volume is unchanged. bus->Scale(-1); for (int i = 0; i < bus->channels(); ++i) { SCOPED_TRACE("Invalid Scale"); VerifyValue(bus->channel(i), bus->frames(), kFillValue); } // Verify correct volume adjustment. static const float kVolume = 0.5; bus->Scale(kVolume); for (int i = 0; i < bus->channels(); ++i) { SCOPED_TRACE("Half Scale"); VerifyValue(bus->channel(i), bus->frames(), kFillValue * kVolume); } // Verify zero volume case. bus->Scale(0); for (int i = 0; i < bus->channels(); ++i) { SCOPED_TRACE("Zero Scale"); VerifyValue(bus->channel(i), bus->frames(), 0); } } // Benchmark the FromInterleaved() and ToInterleaved() methods. TEST_F(AudioBusTest, DISABLED_InterleaveBench) { scoped_ptr bus = AudioBus::Create(2, 48000 * 120); const int frame_size = bus->frames() * bus->channels(); FakeAudioRenderCallback callback(0.2); callback.Render(bus.get(), 0); { SCOPED_TRACE("uint8"); scoped_ptr interleaved(new uint8[frame_size]); const int byte_size = sizeof(*interleaved); base::TimeTicks start = base::TimeTicks::HighResNow(); bus->ToInterleaved(bus->frames(), byte_size, interleaved.get()); double total_time_ms = (base::TimeTicks::HighResNow() - start).InMillisecondsF(); printf("ToInterleaved uint8 took %.2fms.\n", total_time_ms); start = base::TimeTicks::HighResNow(); bus->FromInterleaved(interleaved.get(), bus->frames(), byte_size); total_time_ms = (base::TimeTicks::HighResNow() - start).InMillisecondsF(); printf("FromInterleaved uint8 took %.2fms.\n", total_time_ms); } { SCOPED_TRACE("int16"); scoped_ptr interleaved(new int16[frame_size]); const int byte_size = sizeof(*interleaved); base::TimeTicks start = base::TimeTicks::HighResNow(); bus->ToInterleaved(bus->frames(), byte_size, interleaved.get()); double total_time_ms = (base::TimeTicks::HighResNow() - start).InMillisecondsF(); printf("ToInterleaved int16 took %.2fms.\n", total_time_ms); start = base::TimeTicks::HighResNow(); bus->FromInterleaved(interleaved.get(), bus->frames(), byte_size); total_time_ms = (base::TimeTicks::HighResNow() - start).InMillisecondsF(); printf("FromInterleaved int16 took %.2fms.\n", total_time_ms); } { SCOPED_TRACE("int32"); scoped_ptr interleaved(new int32[frame_size]); const int byte_size = sizeof(*interleaved); base::TimeTicks start = base::TimeTicks::HighResNow(); bus->ToInterleaved(bus->frames(), byte_size, interleaved.get()); double total_time_ms = (base::TimeTicks::HighResNow() - start).InMillisecondsF(); printf("ToInterleaved int32 took %.2fms.\n", total_time_ms); start = base::TimeTicks::HighResNow(); bus->FromInterleaved(interleaved.get(), bus->frames(), byte_size); total_time_ms = (base::TimeTicks::HighResNow() - start).InMillisecondsF(); printf("FromInterleaved int32 took %.2fms.\n", total_time_ms); } } } // namespace media