// Copyright (c) 2010 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Defines various types of timestamped media buffers used for transporting // data between filters. Every buffer contains a timestamp in microseconds // describing the relative position of the buffer within the media stream, and // the duration in microseconds for the length of time the buffer will be // rendered. // // Timestamps are derived directly from the encoded media file and are commonly // known as the presentation timestamp (PTS). Durations are a best-guess and // are usually derived from the sample/frame rate of the media file. // // Due to encoding and transmission errors, it is not guaranteed that timestamps // arrive in a monotonically increasing order nor that the next timestamp will // be equal to the previous timestamp plus the duration. // // In the ideal scenario for a 25fps movie, buffers are timestamped as followed: // // Buffer0 Buffer1 Buffer2 ... BufferN // Timestamp: 0us 40000us 80000us ... (N*40000)us // Duration*: 40000us 40000us 40000us ... 40000us // // *25fps = 0.04s per frame = 40000us per frame #ifndef MEDIA_BASE_BUFFERS_H_ #define MEDIA_BASE_BUFFERS_H_ #include "base/logging.h" #include "base/ref_counted.h" #include "base/time.h" namespace media { class StreamSample : public base::RefCountedThreadSafe { public: // Constant timestamp value to indicate an invalid or missing timestamp. static const base::TimeDelta kInvalidTimestamp; // Returns the timestamp of this buffer in microseconds. base::TimeDelta GetTimestamp() const { return timestamp_; } // Returns the duration of this buffer in microseconds. base::TimeDelta GetDuration() const { return duration_; } // Indicates that the sample is the last one in the stream. This method is // pure virtual so implementors can decide when to declare end of stream // depending on specific data. virtual bool IsEndOfStream() const = 0; // Indicates that this sample is discontinuous from the previous one, for // example, following a seek. bool IsDiscontinuous() const { return discontinuous_; } // Sets the timestamp of this buffer in microseconds. void SetTimestamp(const base::TimeDelta& timestamp) { timestamp_ = timestamp; } // Sets the duration of this buffer in microseconds. void SetDuration(const base::TimeDelta& duration) { duration_ = duration; } // Sets the value returned by IsDiscontinuous(). void SetDiscontinuous(bool discontinuous) { discontinuous_ = discontinuous; } protected: friend class base::RefCountedThreadSafe; StreamSample() : discontinuous_(false) { } virtual ~StreamSample() {} base::TimeDelta timestamp_; base::TimeDelta duration_; bool discontinuous_; private: DISALLOW_COPY_AND_ASSIGN(StreamSample); }; class Buffer : public StreamSample { public: // Returns a read only pointer to the buffer data. virtual const uint8* GetData() const = 0; // Returns the size of valid data in bytes. virtual size_t GetDataSize() const = 0; // If there's no data in this buffer, it represents end of stream. virtual bool IsEndOfStream() const { return GetData() == NULL; } protected: virtual ~Buffer() {} }; class WritableBuffer : public Buffer { public: // Returns a read-write pointer to the buffer data. virtual uint8* GetWritableData() = 0; // Updates the size of valid data in bytes, which must be less than or equal // to GetBufferSize(). virtual void SetDataSize(size_t data_size) = 0; // Returns the size of the underlying buffer. virtual size_t GetBufferSize() const = 0; protected: virtual ~WritableBuffer() {} }; } // namespace media #endif // MEDIA_BASE_BUFFERS_H_