// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // MSVC++ requires this to be set before any other includes to get M_SQRT1_2. #define _USE_MATH_DEFINES #include "media/base/channel_mixer.h" #include #include #include "base/logging.h" #include "media/base/audio_bus.h" #include "media/base/vector_math.h" namespace media { // Default scale factor for mixing two channels together. We use a different // value for stereo -> mono and mono -> stereo mixes. static const float kEqualPowerScale = static_cast(M_SQRT1_2); static int ValidateLayout(ChannelLayout layout) { CHECK_NE(layout, CHANNEL_LAYOUT_NONE); CHECK_NE(layout, CHANNEL_LAYOUT_MAX); // TODO(dalecurtis, crogers): We will eventually handle unsupported layouts by // simply copying the input channels to the output channels, similar to if the // user requests identical input and output layouts today. CHECK_NE(layout, CHANNEL_LAYOUT_UNSUPPORTED); // Verify there's at least one channel. Should always be true here by virtue // of not being one of the invalid layouts, but lets double check to be sure. int channel_count = ChannelLayoutToChannelCount(layout); DCHECK_GT(channel_count, 0); // If we have more than one channel, verify a symmetric layout for sanity. // The unit test will verify all possible layouts, so this can be a DCHECK. // Symmetry allows simplifying the matrix building code by allowing us to // assume that if one channel of a pair exists, the other will too. if (channel_count > 1) { DCHECK((ChannelOrder(layout, LEFT) >= 0 && ChannelOrder(layout, RIGHT) >= 0) || (ChannelOrder(layout, SIDE_LEFT) >= 0 && ChannelOrder(layout, SIDE_RIGHT) >= 0) || (ChannelOrder(layout, BACK_LEFT) >= 0 && ChannelOrder(layout, BACK_RIGHT) >= 0) || (ChannelOrder(layout, LEFT_OF_CENTER) >= 0 && ChannelOrder(layout, RIGHT_OF_CENTER) >= 0)) << "Non-symmetric channel layout encountered."; } else { DCHECK_EQ(layout, CHANNEL_LAYOUT_MONO); } return channel_count; } ChannelMixer::ChannelMixer(ChannelLayout input, ChannelLayout output) : input_layout_(input), output_layout_(output), remapping_(false) { // Stereo down mix should never be the output layout. CHECK_NE(output_layout_, CHANNEL_LAYOUT_STEREO_DOWNMIX); int input_channels = ValidateLayout(input_layout_); int output_channels = ValidateLayout(output_layout_); // Size out the initial matrix. matrix_.reserve(output_channels); for (int output_ch = 0; output_ch < output_channels; ++output_ch) matrix_.push_back(std::vector(input_channels, 0)); // Route matching channels and figure out which ones aren't accounted for. for (Channels ch = LEFT; ch < CHANNELS_MAX; ch = static_cast(ch + 1)) { int input_ch_index = ChannelOrder(input_layout_, ch); int output_ch_index = ChannelOrder(output_layout_, ch); if (input_ch_index < 0) continue; if (output_ch_index < 0) { unaccounted_inputs_.push_back(ch); continue; } DCHECK_LT(static_cast(output_ch_index), matrix_.size()); DCHECK_LT(static_cast(input_ch_index), matrix_[output_ch_index].size()); matrix_[output_ch_index][input_ch_index] = 1; } // If all input channels are accounted for, there's nothing left to do. if (unaccounted_inputs_.empty()) { // Since all output channels map directly to inputs we can optimize. remapping_ = true; return; } // Mix front LR into center. if (IsUnaccounted(LEFT)) { // When down mixing to mono from stereo, we need to be careful of full scale // stereo mixes. Scaling by 1 / sqrt(2) here will likely lead to clipping // so we use 1 / 2 instead. float scale = (output == CHANNEL_LAYOUT_MONO && input_channels == 2) ? 0.5 : kEqualPowerScale; Mix(LEFT, CENTER, scale); Mix(RIGHT, CENTER, scale); } // Mix center into front LR. if (IsUnaccounted(CENTER)) { // When up mixing from mono, just do a copy to front LR. float scale = (input == CHANNEL_LAYOUT_MONO) ? 1 : kEqualPowerScale; MixWithoutAccounting(CENTER, LEFT, scale); Mix(CENTER, RIGHT, scale); } // Mix back LR into: side LR || back center || front LR || front center. if (IsUnaccounted(BACK_LEFT)) { if (HasOutputChannel(SIDE_LEFT)) { // If we have side LR, mix back LR into side LR, but instead if the input // doesn't have side LR (but output does) copy back LR to side LR. float scale = HasInputChannel(SIDE_LEFT) ? kEqualPowerScale : 1; Mix(BACK_LEFT, SIDE_LEFT, scale); Mix(BACK_RIGHT, SIDE_RIGHT, scale); } else if (HasOutputChannel(BACK_CENTER)) { // Mix back LR into back center. Mix(BACK_LEFT, BACK_CENTER, kEqualPowerScale); Mix(BACK_RIGHT, BACK_CENTER, kEqualPowerScale); } else if (output > CHANNEL_LAYOUT_MONO) { // Mix back LR into front LR. Mix(BACK_LEFT, LEFT, kEqualPowerScale); Mix(BACK_RIGHT, RIGHT, kEqualPowerScale); } else { // Mix back LR into front center. Mix(BACK_LEFT, CENTER, kEqualPowerScale); Mix(BACK_RIGHT, CENTER, kEqualPowerScale); } } // Mix side LR into: back LR || back center || front LR || front center. if (IsUnaccounted(SIDE_LEFT)) { if (HasOutputChannel(BACK_LEFT)) { // If we have back LR, mix side LR into back LR, but instead if the input // doesn't have back LR (but output does) copy side LR to back LR. float scale = HasInputChannel(BACK_LEFT) ? kEqualPowerScale : 1; Mix(SIDE_LEFT, BACK_LEFT, scale); Mix(SIDE_RIGHT, BACK_RIGHT, scale); } else if (HasOutputChannel(BACK_CENTER)) { // Mix side LR into back center. Mix(SIDE_LEFT, BACK_CENTER, kEqualPowerScale); Mix(SIDE_RIGHT, BACK_CENTER, kEqualPowerScale); } else if (output > CHANNEL_LAYOUT_MONO) { // Mix side LR into front LR. Mix(SIDE_LEFT, LEFT, kEqualPowerScale); Mix(SIDE_RIGHT, RIGHT, kEqualPowerScale); } else { // Mix side LR into front center. Mix(SIDE_LEFT, CENTER, kEqualPowerScale); Mix(SIDE_RIGHT, CENTER, kEqualPowerScale); } } // Mix back center into: back LR || side LR || front LR || front center. if (IsUnaccounted(BACK_CENTER)) { if (HasOutputChannel(BACK_LEFT)) { // Mix back center into back LR. MixWithoutAccounting(BACK_CENTER, BACK_LEFT, kEqualPowerScale); Mix(BACK_CENTER, BACK_RIGHT, kEqualPowerScale); } else if (HasOutputChannel(SIDE_LEFT)) { // Mix back center into side LR. MixWithoutAccounting(BACK_CENTER, SIDE_LEFT, kEqualPowerScale); Mix(BACK_CENTER, SIDE_RIGHT, kEqualPowerScale); } else if (output > CHANNEL_LAYOUT_MONO) { // Mix back center into front LR. // TODO(dalecurtis): Not sure about these values? MixWithoutAccounting(BACK_CENTER, LEFT, kEqualPowerScale); Mix(BACK_CENTER, RIGHT, kEqualPowerScale); } else { // Mix back center into front center. // TODO(dalecurtis): Not sure about these values? Mix(BACK_CENTER, CENTER, kEqualPowerScale); } } // Mix LR of center into: front center || front LR. if (IsUnaccounted(LEFT_OF_CENTER)) { if (HasOutputChannel(CENTER)) { // Mix LR of center into front center. Mix(LEFT_OF_CENTER, CENTER, kEqualPowerScale); Mix(RIGHT_OF_CENTER, CENTER, kEqualPowerScale); } else { // Mix LR of center into front LR. Mix(LEFT_OF_CENTER, LEFT, kEqualPowerScale); Mix(RIGHT_OF_CENTER, RIGHT, kEqualPowerScale); } } // Mix LFE into: front LR || front center. if (IsUnaccounted(LFE)) { if (!HasOutputChannel(CENTER)) { // Mix LFE into front LR. MixWithoutAccounting(LFE, LEFT, kEqualPowerScale); Mix(LFE, RIGHT, kEqualPowerScale); } else { // Mix LFE into front center. Mix(LFE, CENTER, kEqualPowerScale); } } // All channels should now be accounted for. DCHECK(unaccounted_inputs_.empty()); // See if the output |matrix_| is simply a remapping matrix. If each input // channel maps to a single output channel we can simply remap. Doing this // programmatically is less fragile than logic checks on channel mappings. for (int output_ch = 0; output_ch < output_channels; ++output_ch) { int input_mappings = 0; for (int input_ch = 0; input_ch < input_channels; ++input_ch) { // We can only remap if each row contains a single scale of 1. I.e., each // output channel is mapped from a single unscaled input channel. if (matrix_[output_ch][input_ch] != 1 || ++input_mappings > 1) return; } } // If we've gotten here, |matrix_| is simply a remapping. remapping_ = true; } ChannelMixer::~ChannelMixer() {} void ChannelMixer::Transform(const AudioBus* input, AudioBus* output) { CHECK_EQ(matrix_.size(), static_cast(output->channels())); CHECK_EQ(matrix_[0].size(), static_cast(input->channels())); CHECK_EQ(input->frames(), output->frames()); // Zero initialize |output| so we're accumulating from zero. output->Zero(); // If we're just remapping we can simply copy the correct input to output. if (remapping_) { for (int output_ch = 0; output_ch < output->channels(); ++output_ch) { for (int input_ch = 0; input_ch < input->channels(); ++input_ch) { float scale = matrix_[output_ch][input_ch]; if (scale > 0) { DCHECK_EQ(scale, 1.0f); memcpy(output->channel(output_ch), input->channel(input_ch), sizeof(*output->channel(output_ch)) * output->frames()); break; } } } return; } for (int output_ch = 0; output_ch < output->channels(); ++output_ch) { for (int input_ch = 0; input_ch < input->channels(); ++input_ch) { float scale = matrix_[output_ch][input_ch]; // Scale should always be positive. Don't bother scaling by zero. DCHECK_GE(scale, 0); if (scale > 0) { vector_math::FMAC(input->channel(input_ch), scale, output->frames(), output->channel(output_ch)); } } } } void ChannelMixer::AccountFor(Channels ch) { unaccounted_inputs_.erase(std::find( unaccounted_inputs_.begin(), unaccounted_inputs_.end(), ch)); } bool ChannelMixer::IsUnaccounted(Channels ch) { return std::find(unaccounted_inputs_.begin(), unaccounted_inputs_.end(), ch) != unaccounted_inputs_.end(); } bool ChannelMixer::HasInputChannel(Channels ch) { return ChannelOrder(input_layout_, ch) >= 0; } bool ChannelMixer::HasOutputChannel(Channels ch) { return ChannelOrder(output_layout_, ch) >= 0; } void ChannelMixer::Mix(Channels input_ch, Channels output_ch, float scale) { MixWithoutAccounting(input_ch, output_ch, scale); AccountFor(input_ch); } void ChannelMixer::MixWithoutAccounting(Channels input_ch, Channels output_ch, float scale) { int input_ch_index = ChannelOrder(input_layout_, input_ch); int output_ch_index = ChannelOrder(output_layout_, output_ch); DCHECK(IsUnaccounted(input_ch)); DCHECK_GE(input_ch_index, 0); DCHECK_GE(output_ch_index, 0); DCHECK_EQ(matrix_[output_ch_index][input_ch_index], 0); matrix_[output_ch_index][input_ch_index] = scale; } } // namespace media