// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // Input buffer layout, dividing the total buffer into regions (r0_ - r5_): // // |----------------|-----------------------------------------|----------------| // // kBlockSize + kKernelSize / 2 // <---------------------------------------------------------> // r0_ // // kKernelSize / 2 kKernelSize / 2 kKernelSize / 2 kKernelSize / 2 // <---------------> <---------------> <---------------> <---------------> // r1_ r2_ r3_ r4_ // // kBlockSize // <---------------------------------------> // r5_ // // The algorithm: // // 1) Consume input frames into r0_ (r1_ is zero-initialized). // 2) Position kernel centered at start of r0_ (r2_) and generate output frames // until kernel is centered at start of r4_ or we've finished generating all // the output frames. // 3) Copy r3_ to r1_ and r4_ to r2_. // 4) Consume input frames into r5_ (zero-pad if we run out of input). // 5) Goto (2) until all of input is consumed. // // Note: we're glossing over how the sub-sample handling works with // |virtual_source_idx_|, etc. // MSVC++ requires this to be set before any other includes to get M_PI. #define _USE_MATH_DEFINES #include "media/base/sinc_resampler.h" #include #include "base/cpu.h" #include "base/logging.h" #include "build/build_config.h" #if defined(ARCH_CPU_X86_FAMILY) && defined(__SSE__) #include #endif #if defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON) #include #endif namespace media { namespace { enum { // The kernel size can be adjusted for quality (higher is better) at the // expense of performance. Must be a multiple of 32. // TODO(dalecurtis): Test performance to see if we can jack this up to 64+. kKernelSize = 32, // The number of destination frames generated per processing pass. Affects // how often and for how much SincResampler calls back for input. Must be // greater than kKernelSize. kBlockSize = 512, // The kernel offset count is used for interpolation and is the number of // sub-sample kernel shifts. Can be adjusted for quality (higher is better) // at the expense of allocating more memory. kKernelOffsetCount = 32, kKernelStorageSize = kKernelSize * (kKernelOffsetCount + 1), // The size (in samples) of the internal buffer used by the resampler. kBufferSize = kBlockSize + kKernelSize }; } // namespace const int SincResampler::kMaximumLookAheadSize = kBufferSize; SincResampler::SincResampler(double io_sample_rate_ratio, const ReadCB& read_cb) : io_sample_rate_ratio_(io_sample_rate_ratio), virtual_source_idx_(0), buffer_primed_(false), read_cb_(read_cb), // Create input buffers with a 16-byte alignment for SSE optimizations. kernel_storage_(static_cast( base::AlignedAlloc(sizeof(float) * kKernelStorageSize, 16))), input_buffer_(static_cast( base::AlignedAlloc(sizeof(float) * kBufferSize, 16))), // Setup various region pointers in the buffer (see diagram above). r0_(input_buffer_.get() + kKernelSize / 2), r1_(input_buffer_.get()), r2_(r0_), r3_(r0_ + kBlockSize - kKernelSize / 2), r4_(r0_ + kBlockSize), r5_(r0_ + kKernelSize / 2) { // Ensure kKernelSize is a multiple of 32 for easy SSE optimizations; causes // r0_ and r5_ (used for input) to always be 16-byte aligned by virtue of // input_buffer_ being 16-byte aligned. DCHECK_EQ(kKernelSize % 32, 0) << "kKernelSize must be a multiple of 32!"; DCHECK_GT(kBlockSize, kKernelSize) << "kBlockSize must be greater than kKernelSize!"; // Basic sanity checks to ensure buffer regions are laid out correctly: // r0_ and r2_ should always be the same position. DCHECK_EQ(r0_, r2_); // r1_ at the beginning of the buffer. DCHECK_EQ(r1_, input_buffer_.get()); // r1_ left of r2_, r2_ left of r5_ and r1_, r2_ size correct. DCHECK_EQ(r2_ - r1_, r5_ - r2_); // r3_ left of r4_, r5_ left of r0_ and r3_ size correct. DCHECK_EQ(r4_ - r3_, r5_ - r0_); // r3_, r4_ size correct and r4_ at the end of the buffer. DCHECK_EQ(r4_ + (r4_ - r3_), r1_ + kBufferSize); // r5_ size correct and at the end of the buffer. DCHECK_EQ(r5_ + kBlockSize, r1_ + kBufferSize); memset(kernel_storage_.get(), 0, sizeof(*kernel_storage_.get()) * kKernelStorageSize); memset(input_buffer_.get(), 0, sizeof(*input_buffer_.get()) * kBufferSize); InitializeKernel(); } SincResampler::~SincResampler() {} void SincResampler::InitializeKernel() { // Blackman window parameters. static const double kAlpha = 0.16; static const double kA0 = 0.5 * (1.0 - kAlpha); static const double kA1 = 0.5; static const double kA2 = 0.5 * kAlpha; // |sinc_scale_factor| is basically the normalized cutoff frequency of the // low-pass filter. double sinc_scale_factor = io_sample_rate_ratio_ > 1.0 ? 1.0 / io_sample_rate_ratio_ : 1.0; // The sinc function is an idealized brick-wall filter, but since we're // windowing it the transition from pass to stop does not happen right away. // So we should adjust the low pass filter cutoff slightly downward to avoid // some aliasing at the very high-end. // TODO(crogers): this value is empirical and to be more exact should vary // depending on kKernelSize. sinc_scale_factor *= 0.9; // Generates a set of windowed sinc() kernels. // We generate a range of sub-sample offsets from 0.0 to 1.0. for (int offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) { double subsample_offset = static_cast(offset_idx) / kKernelOffsetCount; for (int i = 0; i < kKernelSize; ++i) { // Compute the sinc with offset. double s = sinc_scale_factor * M_PI * (i - kKernelSize / 2 - subsample_offset); double sinc = (!s ? 1.0 : sin(s) / s) * sinc_scale_factor; // Compute Blackman window, matching the offset of the sinc(). double x = (i - subsample_offset) / kKernelSize; double window = kA0 - kA1 * cos(2.0 * M_PI * x) + kA2 * cos(4.0 * M_PI * x); // Window the sinc() function and store at the correct offset. kernel_storage_.get()[i + offset_idx * kKernelSize] = sinc * window; } } } void SincResampler::Resample(float* destination, int frames) { int remaining_frames = frames; // Step (1) -- Prime the input buffer at the start of the input stream. if (!buffer_primed_) { read_cb_.Run(r0_, kBlockSize + kKernelSize / 2); buffer_primed_ = true; } // Step (2) -- Resample! while (remaining_frames) { while (virtual_source_idx_ < kBlockSize) { // |virtual_source_idx_| lies in between two kernel offsets so figure out // what they are. int source_idx = static_cast(virtual_source_idx_); double subsample_remainder = virtual_source_idx_ - source_idx; double virtual_offset_idx = subsample_remainder * kKernelOffsetCount; int offset_idx = static_cast(virtual_offset_idx); // We'll compute "convolutions" for the two kernels which straddle // |virtual_source_idx_|. float* k1 = kernel_storage_.get() + offset_idx * kKernelSize; float* k2 = k1 + kKernelSize; // Initialize input pointer based on quantized |virtual_source_idx_|. float* input_ptr = r1_ + source_idx; // Figure out how much to weight each kernel's "convolution". double kernel_interpolation_factor = virtual_offset_idx - offset_idx; *destination++ = Convolve( input_ptr, k1, k2, kernel_interpolation_factor); // Advance the virtual index. virtual_source_idx_ += io_sample_rate_ratio_; if (!--remaining_frames) return; } // Wrap back around to the start. virtual_source_idx_ -= kBlockSize; // Step (3) Copy r3_ to r1_ and r4_ to r2_. // This wraps the last input frames back to the start of the buffer. memcpy(r1_, r3_, sizeof(*input_buffer_.get()) * (kKernelSize / 2)); memcpy(r2_, r4_, sizeof(*input_buffer_.get()) * (kKernelSize / 2)); // Step (4) // Refresh the buffer with more input. read_cb_.Run(r5_, kBlockSize); } } int SincResampler::ChunkSize() { return kBlockSize / io_sample_rate_ratio_; } void SincResampler::Flush() { virtual_source_idx_ = 0; buffer_primed_ = false; memset(input_buffer_.get(), 0, sizeof(*input_buffer_.get()) * kBufferSize); } float SincResampler::Convolve(const float* input_ptr, const float* k1, const float* k2, double kernel_interpolation_factor) { // Rely on function level static initialization to keep ConvolveProc selection // thread safe. typedef float (*ConvolveProc)(const float* src, const float* k1, const float* k2, double kernel_interpolation_factor); #if defined(ARCH_CPU_X86_FAMILY) && defined(__SSE__) static const ConvolveProc kConvolveProc = base::CPU().has_sse() ? Convolve_SSE : Convolve_C; #elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON) static const ConvolveProc kConvolveProc = Convolve_NEON; #else static const ConvolveProc kConvolveProc = Convolve_C; #endif return kConvolveProc(input_ptr, k1, k2, kernel_interpolation_factor); } float SincResampler::Convolve_C(const float* input_ptr, const float* k1, const float* k2, double kernel_interpolation_factor) { float sum1 = 0; float sum2 = 0; // Generate a single output sample. Unrolling this loop hurt performance in // local testing. int n = kKernelSize; while (n--) { sum1 += *input_ptr * *k1++; sum2 += *input_ptr++ * *k2++; } // Linearly interpolate the two "convolutions". return (1.0 - kernel_interpolation_factor) * sum1 + kernel_interpolation_factor * sum2; } #if defined(ARCH_CPU_X86_FAMILY) && defined(__SSE__) float SincResampler::Convolve_SSE(const float* input_ptr, const float* k1, const float* k2, double kernel_interpolation_factor) { // Ensure |k1|, |k2| are 16-byte aligned for SSE usage. Should always be true // so long as kKernelSize is a multiple of 16. DCHECK_EQ(0u, reinterpret_cast(k1) & 0x0F); DCHECK_EQ(0u, reinterpret_cast(k2) & 0x0F); __m128 m_input; __m128 m_sums1 = _mm_setzero_ps(); __m128 m_sums2 = _mm_setzero_ps(); // Based on |input_ptr| alignment, we need to use loadu or load. Unrolling // these loops hurt performance in local testing. if (reinterpret_cast(input_ptr) & 0x0F) { for (int i = 0; i < kKernelSize; i += 4) { m_input = _mm_loadu_ps(input_ptr + i); m_sums1 = _mm_add_ps(m_sums1, _mm_mul_ps(m_input, _mm_load_ps(k1 + i))); m_sums2 = _mm_add_ps(m_sums2, _mm_mul_ps(m_input, _mm_load_ps(k2 + i))); } } else { for (int i = 0; i < kKernelSize; i += 4) { m_input = _mm_load_ps(input_ptr + i); m_sums1 = _mm_add_ps(m_sums1, _mm_mul_ps(m_input, _mm_load_ps(k1 + i))); m_sums2 = _mm_add_ps(m_sums2, _mm_mul_ps(m_input, _mm_load_ps(k2 + i))); } } // Linearly interpolate the two "convolutions". m_sums1 = _mm_mul_ps(m_sums1, _mm_set_ps1(1.0 - kernel_interpolation_factor)); m_sums2 = _mm_mul_ps(m_sums2, _mm_set_ps1(kernel_interpolation_factor)); m_sums1 = _mm_add_ps(m_sums1, m_sums2); // Sum components together. float result; m_sums2 = _mm_add_ps(_mm_movehl_ps(m_sums1, m_sums1), m_sums1); _mm_store_ss(&result, _mm_add_ss(m_sums2, _mm_shuffle_ps( m_sums2, m_sums2, 1))); return result; } #endif #if defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON) float SincResampler::Convolve_NEON(const float* input_ptr, const float* k1, const float* k2, double kernel_interpolation_factor) { float32x4_t m_input; float32x4_t m_sums1 = vmovq_n_f32(0); float32x4_t m_sums2 = vmovq_n_f32(0); const float* upper = input_ptr + kKernelSize; for (; input_ptr < upper; ) { m_input = vld1q_f32(input_ptr); input_ptr += 4; m_sums1 = vmlaq_f32(m_sums1, m_input, vld1q_f32(k1)); k1 += 4; m_sums2 = vmlaq_f32(m_sums2, m_input, vld1q_f32(k2)); k2 += 4; } // Linearly interpolate the two "convolutions". m_sums1 = vmlaq_f32( vmulq_f32(m_sums1, vmovq_n_f32(1.0 - kernel_interpolation_factor)), m_sums2, vmovq_n_f32(kernel_interpolation_factor)); // Sum components together. float32x2_t m_half = vadd_f32(vget_high_f32(m_sums1), vget_low_f32(m_sums1)); return vget_lane_f32(vpadd_f32(m_half, m_half), 0); } #endif } // namespace media