// Copyright (c) 2010 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "media/base/video_frame.h" #include "base/logging.h" namespace media { // static size_t VideoFrame::GetNumberOfPlanes(VideoFrame::Format format) { switch (format) { case VideoFrame::RGB555: case VideoFrame::RGB565: case VideoFrame::RGB24: case VideoFrame::RGB32: case VideoFrame::RGBA: case VideoFrame::ASCII: return VideoFrame::kNumRGBPlanes; case VideoFrame::YV12: case VideoFrame::YV16: return VideoFrame::kNumYUVPlanes; case VideoFrame::NV12: return VideoFrame::kNumNV12Planes; default: return 0; } } // static void VideoFrame::CreateFrame(VideoFrame::Format format, size_t width, size_t height, base::TimeDelta timestamp, base::TimeDelta duration, scoped_refptr* frame_out) { DCHECK(width > 0 && height > 0); DCHECK(width * height < 100000000); DCHECK(frame_out); bool alloc_worked = false; scoped_refptr frame( new VideoFrame(VideoFrame::TYPE_SYSTEM_MEMORY, format, width, height)); if (frame) { frame->SetTimestamp(timestamp); frame->SetDuration(duration); switch (format) { case VideoFrame::RGB555: case VideoFrame::RGB565: alloc_worked = frame->AllocateRGB(2u); break; case VideoFrame::RGB24: alloc_worked = frame->AllocateRGB(3u); break; case VideoFrame::RGB32: case VideoFrame::RGBA: alloc_worked = frame->AllocateRGB(4u); break; case VideoFrame::YV12: case VideoFrame::YV16: alloc_worked = frame->AllocateYUV(); break; case VideoFrame::ASCII: alloc_worked = frame->AllocateRGB(1u); break; default: NOTREACHED(); alloc_worked = false; break; } } *frame_out = alloc_worked ? frame : NULL; } // static void VideoFrame::CreateFrameExternal(SurfaceType type, Format format, size_t width, size_t height, size_t planes, uint8* const data[kMaxPlanes], const int32 strides[kMaxPlanes], base::TimeDelta timestamp, base::TimeDelta duration, void* private_buffer, scoped_refptr* frame_out) { DCHECK(frame_out); scoped_refptr frame( new VideoFrame(type, format, width, height)); if (frame) { frame->SetTimestamp(timestamp); frame->SetDuration(duration); frame->external_memory_ = true; frame->planes_ = planes; frame->private_buffer_ = private_buffer; for (size_t i = 0; i < kMaxPlanes; ++i) { frame->data_[i] = data[i]; frame->strides_[i] = strides[i]; } } *frame_out = frame; } // static void VideoFrame::CreateFrameGlTexture(Format format, size_t width, size_t height, GlTexture const textures[kMaxPlanes], scoped_refptr* frame_out) { DCHECK(frame_out); scoped_refptr frame( new VideoFrame(TYPE_GL_TEXTURE, format, width, height)); if (frame) { frame->external_memory_ = true; frame->planes_ = GetNumberOfPlanes(format); for (size_t i = 0; i < kMaxPlanes; ++i) { frame->gl_textures_[i] = textures[i]; // TODO(hclam): Fix me for color format other than RGBA. frame->strides_[i] = width; } } *frame_out = frame; } // static void VideoFrame::CreateEmptyFrame(scoped_refptr* frame_out) { *frame_out = new VideoFrame(VideoFrame::TYPE_SYSTEM_MEMORY, VideoFrame::EMPTY, 0, 0); } // static void VideoFrame::CreateBlackFrame(int width, int height, scoped_refptr* frame_out) { DCHECK_GT(width, 0); DCHECK_GT(height, 0); // Create our frame. scoped_refptr frame; const base::TimeDelta kZero; VideoFrame::CreateFrame(VideoFrame::YV12, width, height, kZero, kZero, &frame); DCHECK(frame); // Now set the data to YUV(0,128,128). const uint8 kBlackY = 0x00; const uint8 kBlackUV = 0x80; // Fill the Y plane. uint8* y_plane = frame->data(VideoFrame::kYPlane); for (size_t i = 0; i < frame->height_; ++i) { memset(y_plane, kBlackY, frame->width_); y_plane += frame->stride(VideoFrame::kYPlane); } // Fill the U and V planes. uint8* u_plane = frame->data(VideoFrame::kUPlane); uint8* v_plane = frame->data(VideoFrame::kVPlane); for (size_t i = 0; i < (frame->height_ / 2); ++i) { memset(u_plane, kBlackUV, frame->width_ / 2); memset(v_plane, kBlackUV, frame->width_ / 2); u_plane += frame->stride(VideoFrame::kUPlane); v_plane += frame->stride(VideoFrame::kVPlane); } // Success! *frame_out = frame; } static inline size_t RoundUp(size_t value, size_t alignment) { // Check that |alignment| is a power of 2. DCHECK((alignment + (alignment - 1)) == (alignment | (alignment - 1))); return ((value + (alignment - 1)) & ~(alignment-1)); } bool VideoFrame::AllocateRGB(size_t bytes_per_pixel) { // Round up to align at a 64-bit (8 byte) boundary for each row. This // is sufficient for MMX reads (movq). size_t bytes_per_row = RoundUp(width_ * bytes_per_pixel, 8); planes_ = VideoFrame::kNumRGBPlanes; strides_[VideoFrame::kRGBPlane] = bytes_per_row; data_[VideoFrame::kRGBPlane] = new uint8[bytes_per_row * height_]; DCHECK(data_[VideoFrame::kRGBPlane]); DCHECK(!(reinterpret_cast(data_[VideoFrame::kRGBPlane]) & 7)); COMPILE_ASSERT(0 == VideoFrame::kRGBPlane, RGB_data_must_be_index_0); return (NULL != data_[VideoFrame::kRGBPlane]); } static const int kFramePadBytes = 15; // allows faster SIMD YUV convert bool VideoFrame::AllocateYUV() { DCHECK(format_ == VideoFrame::YV12 || format_ == VideoFrame::YV16); // Align Y rows at 32-bit (4 byte) boundaries. The stride for both YV12 and // YV16 is 1/2 of the stride of Y. For YV12, every row of bytes for U and V // applies to two rows of Y (one byte of UV for 4 bytes of Y), so in the // case of YV12 the strides are identical for the same width surface, but the // number of bytes allocated for YV12 is 1/2 the amount for U & V as YV16. // We also round the height of the surface allocated to be an even number // to avoid any potential of faulting by code that attempts to access the Y // values of the final row, but assumes that the last row of U & V applies to // a full two rows of Y. size_t alloc_height = RoundUp(height_, 2); size_t y_bytes_per_row = RoundUp(width_, 4); size_t uv_stride = RoundUp(y_bytes_per_row / 2, 4); size_t y_bytes = alloc_height * y_bytes_per_row; size_t uv_bytes = alloc_height * uv_stride; if (format_ == VideoFrame::YV12) { uv_bytes /= 2; } uint8* data = new uint8[y_bytes + (uv_bytes * 2) + kFramePadBytes]; if (data) { planes_ = VideoFrame::kNumYUVPlanes; COMPILE_ASSERT(0 == VideoFrame::kYPlane, y_plane_data_must_be_index_0); data_[VideoFrame::kYPlane] = data; data_[VideoFrame::kUPlane] = data + y_bytes; data_[VideoFrame::kVPlane] = data + y_bytes + uv_bytes; strides_[VideoFrame::kYPlane] = y_bytes_per_row; strides_[VideoFrame::kUPlane] = uv_stride; strides_[VideoFrame::kVPlane] = uv_stride; return true; } NOTREACHED(); return false; } VideoFrame::VideoFrame(VideoFrame::SurfaceType type, VideoFrame::Format format, size_t width, size_t height) { type_ = type; format_ = format; width_ = width; height_ = height; planes_ = 0; memset(&strides_, 0, sizeof(strides_)); memset(&data_, 0, sizeof(data_)); memset(&gl_textures_, 0, sizeof(gl_textures_)); external_memory_ = false; private_buffer_ = NULL; } VideoFrame::~VideoFrame() { // In multi-plane allocations, only a single block of memory is allocated // on the heap, and other |data| pointers point inside the same, single block // so just delete index 0. if (!external_memory_) delete[] data_[0]; } bool VideoFrame::IsEndOfStream() const { return format_ == VideoFrame::EMPTY; } } // namespace media