// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "media/base/video_frame.h" #include "base/logging.h" #include "base/string_piece.h" #include "media/base/limits.h" #include "media/base/video_util.h" #if !defined(OS_ANDROID) #include "media/ffmpeg/ffmpeg_common.h" #endif #include namespace media { // static scoped_refptr VideoFrame::CreateFrame( VideoFrame::Format format, const gfx::Size& data_size, const gfx::Size& natural_size, base::TimeDelta timestamp) { DCHECK(IsValidConfig(format, data_size, natural_size)); scoped_refptr frame(new VideoFrame( format, data_size, natural_size, timestamp)); switch (format) { case VideoFrame::RGB32: frame->AllocateRGB(4u); break; case VideoFrame::YV12: case VideoFrame::YV16: frame->AllocateYUV(); break; default: LOG(FATAL) << "Unsupported frame format: " << format; } return frame; } // static bool VideoFrame::IsValidConfig(VideoFrame::Format format, const gfx::Size& data_size, const gfx::Size& natural_size) { return (format != VideoFrame::INVALID && data_size.width() > 0 && data_size.height() > 0 && data_size.width() <= limits::kMaxDimension && data_size.height() <= limits::kMaxDimension && data_size.width() * data_size.height() <= limits::kMaxCanvas && natural_size.width() > 0 && natural_size.height() > 0 && natural_size.width() <= limits::kMaxDimension && natural_size.height() <= limits::kMaxDimension && natural_size.width() * natural_size.height() <= limits::kMaxCanvas); } // static scoped_refptr VideoFrame::WrapNativeTexture( uint32 texture_id, uint32 texture_target, const gfx::Size& data_size, const gfx::Size& natural_size, base::TimeDelta timestamp, const ReadPixelsCB& read_pixels_cb, const base::Closure& no_longer_needed) { scoped_refptr frame( new VideoFrame(NATIVE_TEXTURE, data_size, natural_size, timestamp)); frame->texture_id_ = texture_id; frame->texture_target_ = texture_target; frame->read_pixels_cb_ = read_pixels_cb; frame->texture_no_longer_needed_ = no_longer_needed; return frame; } void VideoFrame::ReadPixelsFromNativeTexture(void* pixels) { DCHECK_EQ(format_, NATIVE_TEXTURE); if (!read_pixels_cb_.is_null()) read_pixels_cb_.Run(pixels); } // static scoped_refptr VideoFrame::CreateEmptyFrame() { return new VideoFrame( VideoFrame::EMPTY, gfx::Size(), gfx::Size(), base::TimeDelta()); } // static scoped_refptr VideoFrame::CreateColorFrame( const gfx::Size& size, uint8 y, uint8 u, uint8 v, base::TimeDelta timestamp) { DCHECK(IsValidConfig(VideoFrame::YV12, size, size)); scoped_refptr frame = VideoFrame::CreateFrame( VideoFrame::YV12, size, size, timestamp); FillYUV(frame, y, u, v); return frame; } // static scoped_refptr VideoFrame::CreateBlackFrame(const gfx::Size& size) { const uint8 kBlackY = 0x00; const uint8 kBlackUV = 0x80; const base::TimeDelta kZero; return CreateColorFrame(size, kBlackY, kBlackUV, kBlackUV, kZero); } static inline size_t RoundUp(size_t value, size_t alignment) { // Check that |alignment| is a power of 2. DCHECK((alignment + (alignment - 1)) == (alignment | (alignment - 1))); return ((value + (alignment - 1)) & ~(alignment-1)); } static const int kFrameSizeAlignment = 16; // Allows faster SIMD YUV convert. Also, FFmpeg overreads/-writes occasionally. static const int kFramePadBytes = 15; void VideoFrame::AllocateRGB(size_t bytes_per_pixel) { // Round up to align at least at a 16-byte boundary for each row. // This is sufficient for MMX and SSE2 reads (movq/movdqa). size_t bytes_per_row = RoundUp(data_size_.width(), kFrameSizeAlignment) * bytes_per_pixel; size_t aligned_height = RoundUp(data_size_.height(), kFrameSizeAlignment); strides_[VideoFrame::kRGBPlane] = bytes_per_row; #if !defined(OS_ANDROID) // TODO(dalecurtis): use DataAligned or so, so this #ifdef hackery // doesn't need to be repeated in every single user of aligned data. data_[VideoFrame::kRGBPlane] = reinterpret_cast( av_malloc(bytes_per_row * aligned_height + kFramePadBytes)); #else data_[VideoFrame::kRGBPlane] = new uint8_t[bytes_per_row * aligned_height]; #endif DCHECK(!(reinterpret_cast(data_[VideoFrame::kRGBPlane]) & 7)); COMPILE_ASSERT(0 == VideoFrame::kRGBPlane, RGB_data_must_be_index_0); } void VideoFrame::AllocateYUV() { DCHECK(format_ == VideoFrame::YV12 || format_ == VideoFrame::YV16); // Align Y rows at least at 16 byte boundaries. The stride for both // YV12 and YV16 is 1/2 of the stride of Y. For YV12, every row of bytes for // U and V applies to two rows of Y (one byte of UV for 4 bytes of Y), so in // the case of YV12 the strides are identical for the same width surface, but // the number of bytes allocated for YV12 is 1/2 the amount for U & V as // YV16. We also round the height of the surface allocated to be an even // number to avoid any potential of faulting by code that attempts to access // the Y values of the final row, but assumes that the last row of U & V // applies to a full two rows of Y. size_t y_stride = RoundUp(row_bytes(VideoFrame::kYPlane), kFrameSizeAlignment); size_t uv_stride = RoundUp(row_bytes(VideoFrame::kUPlane), kFrameSizeAlignment); // The *2 here is because some formats (e.g. h264) allow interlaced coding, // and then the size needs to be a multiple of two macroblocks (vertically). // See libavcodec/utils.c:avcodec_align_dimensions2(). size_t y_height = RoundUp(data_size_.height(), kFrameSizeAlignment * 2); size_t uv_height = format_ == VideoFrame::YV12 ? y_height / 2 : y_height; size_t y_bytes = y_height * y_stride; size_t uv_bytes = uv_height * uv_stride; #if !defined(OS_ANDROID) // TODO(dalecurtis): use DataAligned or so, so this #ifdef hackery // doesn't need to be repeated in every single user of aligned data. // The extra line of UV being allocated is because h264 chroma MC // overreads by one line in some cases, see libavcodec/utils.c: // avcodec_align_dimensions2() and libavcodec/x86/h264_chromamc.asm: // put_h264_chroma_mc4_ssse3(). uint8* data = reinterpret_cast( av_malloc(y_bytes + (uv_bytes * 2 + uv_stride) + kFramePadBytes)); #else uint8* data = new uint8_t[y_bytes + (uv_bytes * 2)]; #endif COMPILE_ASSERT(0 == VideoFrame::kYPlane, y_plane_data_must_be_index_0); data_[VideoFrame::kYPlane] = data; data_[VideoFrame::kUPlane] = data + y_bytes; data_[VideoFrame::kVPlane] = data + y_bytes + uv_bytes; strides_[VideoFrame::kYPlane] = y_stride; strides_[VideoFrame::kUPlane] = uv_stride; strides_[VideoFrame::kVPlane] = uv_stride; } VideoFrame::VideoFrame(VideoFrame::Format format, const gfx::Size& data_size, const gfx::Size& natural_size, base::TimeDelta timestamp) : format_(format), data_size_(data_size), natural_size_(natural_size), texture_id_(0), texture_target_(0), timestamp_(timestamp) { memset(&strides_, 0, sizeof(strides_)); memset(&data_, 0, sizeof(data_)); } VideoFrame::~VideoFrame() { if (format_ == NATIVE_TEXTURE && !texture_no_longer_needed_.is_null()) { texture_no_longer_needed_.Run(); texture_no_longer_needed_.Reset(); } // In multi-plane allocations, only a single block of memory is allocated // on the heap, and other |data| pointers point inside the same, single block // so just delete index 0. if (data_[0]) { #if !defined(OS_ANDROID) av_free(data_[0]); #else delete[] data_[0]; #endif } } bool VideoFrame::IsValidPlane(size_t plane) const { switch (format_) { case RGB32: return plane == kRGBPlane; case YV12: case YV16: return plane == kYPlane || plane == kUPlane || plane == kVPlane; case NATIVE_TEXTURE: NOTREACHED() << "NATIVE_TEXTUREs don't use plane-related methods!"; return false; default: break; } // Intentionally leave out non-production formats. NOTREACHED() << "Unsupported video frame format: " << format_; return false; } int VideoFrame::stride(size_t plane) const { DCHECK(IsValidPlane(plane)); return strides_[plane]; } int VideoFrame::row_bytes(size_t plane) const { DCHECK(IsValidPlane(plane)); int width = data_size_.width(); switch (format_) { // 32bpp. case RGB32: return width * 4; // Planar, 8bpp. case YV12: case YV16: if (plane == kYPlane) return width; return RoundUp(width, 2) / 2; default: break; } // Intentionally leave out non-production formats. NOTREACHED() << "Unsupported video frame format: " << format_; return 0; } int VideoFrame::rows(size_t plane) const { DCHECK(IsValidPlane(plane)); int height = data_size_.height(); switch (format_) { case RGB32: case YV16: return height; case YV12: if (plane == kYPlane) return height; return RoundUp(height, 2) / 2; default: break; } // Intentionally leave out non-production formats. NOTREACHED() << "Unsupported video frame format: " << format_; return 0; } uint8* VideoFrame::data(size_t plane) const { DCHECK(IsValidPlane(plane)); return data_[plane]; } uint32 VideoFrame::texture_id() const { DCHECK_EQ(format_, NATIVE_TEXTURE); return texture_id_; } uint32 VideoFrame::texture_target() const { DCHECK_EQ(format_, NATIVE_TEXTURE); return texture_target_; } bool VideoFrame::IsEndOfStream() const { return format_ == VideoFrame::EMPTY; } void VideoFrame::HashFrameForTesting(base::MD5Context* context) { for(int plane = 0; plane < kMaxPlanes; plane++) { if (!IsValidPlane(plane)) break; for(int row = 0; row < rows(plane); row++) { base::MD5Update(context, base::StringPiece( reinterpret_cast(data(plane) + stride(plane) * row), row_bytes(plane))); } } } } // namespace media